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PREFACE TO THE THIRD REVISED PRINTING

Since the appearance of the second printing, this text

has had a fairly extensive tryout in some 50 schools with

1,500 students involved. The teachers participating in this

experimental use of the text have been most generous in

supplying corrections and suggestions for improvement.

A great deal of feedback was gleaned from a three day

conference, which was attended by nearly all the teachers

using the book, and was held in Tallahassee, Florida March

23-25, 1970.

All the corrections supplied by the users have been

made, but unfortunately time and resources have not allowed

us to incorporate the suggestions for rewriting. Only a dozen

or so pages of additional text appear in this printing.

However, most of the suggestions made by the teachers

in addition to some after thoughts of the authors appear in

the Teacher's Commentary. This commentary contains:

(a) suggestions for the handling of theory,

(b) related mathematics for interPDt of teachers or

possible enrichment material,

(c) some additional flow charting to supplement Chapter I,

(d) explanation of the rationale where treatment of

topics is unusual,

7
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(e) alternative or improved treatments of various

topics which we were unable to incorporate in the

text,

(f) supplementary exercises, problems and examples,

(g) a summary of the proceedings of the three day con-

ference mentioned above.

It is expected that this commentary will be most

valuable although no one teacher is expected to want to use

or read all of it. It is suggested that the commentary be

lightly scanned before teaching the course to obtain an idea

as to what part of it might prove useful.

We finally r:mark that in response to overwhelming de-

mand, the solutions of problems have been included in the

student text instead of the separate answer booklet. The

only exception to this are solutions which involve flow

charts. These solutions appear instead in the Teacher's

Commentary.
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PREFACE TO THE FIRST PRINTING

This volume is the first part of a one year computer

oriented calculus course (without analytic geometry). Con-

siderable Interest has been manifested in the impact of the

computer in the calculus course, and several books have already

appeared. This book goes much further than any of the others

in the directions of introducing and motivating the ideas of

calculus through computer (i.e., algorithmic) concepts.

Chapter I
comprises an introduction to computing via

algorithms and a simple flow chart language. The book is thus

self-cortained except that material on programming langue..ges

is excluded in order to allow the teacher to use FORTRAN, BASIC,

ALGOL, PL/I, or any other programming language. In trying out

an earlier version of these materials in the classroom, on of

the authors found it expedient to teach FORTRAN by merely dis-

playing a flow chart with the corresponding FORTRAN program

alongside followed by two pages of explanation of peculiarities

of the language (integer and real variables, etc.).

The authors have followed the algorithmic approach along

the paths where it led us. This has resulted in a departure

from the traditional ordering of some topics (e.g., sequences

and integration treated before differentiation). It has also

radically changed some of the proofs of theorems and in a few

cases slightly modified the statement of theorems. For example,

the form of the completeness axiom in Section 9 of Chapter 2

is quite unconventional.

.
9
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It Is natural to suppose that a computer approach to

calculus would place more emphasis on heuristic than on rIgor.

While this may be the case with later efforts derived from

this one, it is not so in this book. The authors regarded it

part of their task to show that such a treatment could be made

theoretically sound. Consequently, the course is somewhat more

rigorous than may be appropriate for a beginning calculus course.

Some of the more theoretical material has been placed at the

ends of chapters, in starred sections, or in appendices to

chapters. Some users may wish to de-emphasize this material,

but it is hoped that they will give everything cautious trial

to help determine whether the theory viewed in this new light

becomes accessible to more students.

It is hoped that the dynamic or mechanistic character. of

the algorithmic approach will place concepts of calculus within

the comprehension of a wider audience. Whether this hope will

be justified only tiwe and testing will tell. CRICISAM is

anxious to obtain feedback and criticism in order to determine

how the text might best be modified. We invite you to send

your reaction to CRICISAM, Room 212 Diffenbaugh, Florida State

University, Tallahassee, Florida.

The authors here express their appreciation for the efforts

of Prof. E. P. M;les who supplied the impetus for bringing this

project into existence and coordinating the computing facilities

at Florida State University with the writing.
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CHAPTER 0

PRELIMINARIES

I. Introduction

We begin this book with an attempt to get our mathematical

house in order so that the subsequent chapters will be more

easily read. This involves some reminders of items from

earlier courses, but then a bit of review never hurt any-

one. It also involves some definitions and minor theorems.

And finally, it involves some agreements on terminology

and some conventions.

Students often do not read a mathematics book properly.

When approaching a mathematics book, the reader should be

well-armed with pencil and paper. The reading should be

active, not passive: test every claim made by the author(s)

with concrete examples of your own choice, try out suggested

procedures, "doodle" with the ideas, and read with some

doubt (for there may well be errors). When you've finished

a paragraph or so, ask yourself if you understand, and if

not, go through it again.

1
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The problems are designed as challenges, to test your

skill at manipulation, to check whether you understand the

ideas, and in some cases to expand upon the material in

the text. Make sure you can do them, obtaining what

assistance is necessary from your instructor, your classmates,

or from other books.
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2. Numbers

In a certain vague sense, you are already pretty well

aware of the numbers used in the study of calculus, and you

are familiar with the arithmetic of those numbers. In your

study of numbers, you started by learning how to cotnt, and

then progressed to more complicated numbers. We classify

them as follows: integers, rational numbers, real numbers.

The integers (or whole numbers) are the numbers ... ,

2, 3, ... consisting of 0, the positive

...), and the negative integers (-1, -2,

- 3, ...). An integer is even if it Is divisible by 2,

otherwise odd.

-3, -2, -1, 0, 1,

integers (1, 2, 3,

The rational numbers (or fractions) can be constructed

by taking quotients of integers to obtain numbers like
3

84 1

9

14 2
a

- --, etc. In general, they are of the form

where a and b are integers with the proviso, of course,

that b O. Every integer n is a rational number since it

may also be expressed as 111. Notice that there is a smallest

positive integer (namely, 1) but that there is no smallest

positive rational number (Problem 2).

The integers and rational numbers have a commonplace

geometric representation on a straight line. Once 0 and 1

a
16
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have been selected, generally with 1 to the right of 0,

0 1

we merely take multiples of this unit length to obtain points

corresponding to the integers and fractional parts of it for

the rational numbers. A few have been plotted in this next

scene

I I 1 1 1 1 I 1 1 I I

1 5 5
-3 -2 -1 IT0 1 2 3

where the positive numbers are to the right of 0, the negative

numbers to the left.

As we shall now see, though, these points do not "fill

up" the line. That is to say, there are points on the line

which do not correspond to integral or fractional multiples

of the unit length. At 1, construct a

right angle and form the triangle indi-

cated in Figure 1-1, where the point P
0 a 1

is one unit above the point correspond- FIGURE I-I

ing to 1. Thus, a=b=1, and by the Pythagorean Theorem (which

states that c2 = a2+ b2), we have c2 = 12 + 12 =
1 + 1 2.

Now if we rotate the line segment OP
P

so that P falls on the base line, we

can ask if it falls upon a rational t

number. If At does, then it will be 0
FIGURE 1-2

at a distance c from 0, so that for

4
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some rational number we have

x
c =

Y

We may as well (and will) assume that not both x and y are

even, for otherwise we could cancel 2 from both the numerator

and denominator. Now we have

so that

c2 = 2 =

2y2 = x

x2

2

2

Thus, x2 is even, and by Problem 1(f), we conclude that x

is even. Write x = 2p. Then

so that

2y2 = x2 = (2p)2 = 4p2

Y
2

= 2p2

Now y2 is even, and Problem 1(f) demands that y be even. But

look, we've concluded that both x and y are even, which con-

tradicts our assumption. Thus, c cannot be written as a quotient

of integers and is therefore not rational. The number c is

of course f, and we call it, quite naturally, an irrational

number.

The real numbers include the rationals and fill in the

number line by including as well all the irrationals. Every

real number can be represented by decimals; for example,

5
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4

T = 0.8

13 = 1.857142857142857142...
7

25
= -4.16666...

6

Y = 1.41424...

Tr = 3.1415926...

The rationals, in this representation, either terminate

13
(as with 5) or repeat indefinitely (as with -T and -

25

The nonrepeating infinite decim,z1s characterize the irra-

tionals. When we speak of numbers, we will simply mean real

numbers; otherwise, we'll specify further by adjectives

such as rational, whole, positive, nonzero, etc.

Notice that the real numbers and their basic operations

satisfy the following properties (and you should notice the

similarities):

Addition Multiplication

1. If a and b are numbers,
then so is a+b.

2. a + (b+c) = (a+b) + c

3. a + b = b + a

4. The number 0 has the
property that a + 0 = a

for every number a.

5. Every number a has an
"additive inverse," -a,
so that a + (-a) = 0.

6. If a and b are numbers,
then so is ab.

7. a(bc) = (ab)c

8. ab = ba

9. The number 1 has the
property that a1 = a

f)r every number a.

10. Every number a, except
0, has a "multiplicative
inverse," a-1, so that
aa-1 = 1.

11. (This connects the operations of addition
and multiplication) a(b+c) = ab + ac.

6 19
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Any system of numbers with at least two elements satisfying

these first eleven properties is called a field.

Order There are real numbers which exclude zero, called

positive numbers satisfying

12. If a and b are positive numbers, then so are a + b

and ab.

13. If a is a number, then exactly one of the following

statements is true:

(1) a is positive

(ii) a = 0

(iii, -a is positive.

And finally, there is a property named after Archime:des called

the Archimedean Axiom.

14. (Archimedean Axiom) If a is a real number, then there

is a positive integer n which is greater than a.

(We prefer to present the Archimedean Axiom here although it

properly should follow the definition of "greater than" in the

next section.)

We will use these properties generally without comment or

e:-plicit reference, except that where their use is more unusual

or crucial or subtle than in routine arithmetic, an appropriate

comment will be included.

These properties do not characterize the real numbers.

Notice,for example, that the system of rational numbers does

satisfy all fourteen of them. However, an additional property,

to be presented in Chapter 2, will serve with these to char-

acterize the real numbers in the sense that the only

7
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set of numbers satisfying all fifteen properties is the system

of real numbers -- whether presented as points on a line, in-

finite decimals, or whatever.

When referring to these properties, let's agree that

"R7" will mean "property 7 of the system of real numbers."

Just as an example of the sort of things you can prove about

real numbers, we deduce two properties and show how they arise.

They are theorems, but we present them as trivialities. The

idea is -That they don't really tell you anything about real

numbers that you didn't already know. However, it's a good

thing (or at least a comforting thing) to realize that there

has been developed a system of axioms from which one can

actually prove such things. Faith in numbers is all right,

to a certain extent, but lest we succumb to the disease of

numerology, it's wise once in a while to check that the

properties we "know" about numbers can either be proved or

must be accepted as axioms.

Trivial Theorem 1. x0 = 0 for every real number x.

Proof: x0 = x.(0 + 0) by R4 (with a = 0)

so that

x.0 + x.0 by R11

0 = x.0 + [-(x.0)] by R5

= (x0 + x.0) + [-(x0)] by substitution

= x0 + Ex.0 + (-(x.0))] by R2

= xO + 0

= x 0

21

by R5

by R4
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Trivial Theorem 2. (-x)(-y) = xy for any real numbers

x and y.

Proof: (See that you can justify each step)

xy = xy + 0

The other usual rules for elementary computational

arithmetic can be deduced in a similar manner.

9
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PROBLEMS

1. Prove:

(a) the sum of any two even integers is even.

(b) the product of any two even integers is even.

(c) the sum of any two odd integers is even.

(d) the product of any two odd integers is odd.

(e) 0 is even.

(f) if a is an integer and a2 is even, then a is even.

2. Prove that there is no smallest positive rational number.

3. Prove that 3 is irrational.

4. Check that the rat-ionals satisfy the fourteen properties

listed in this section.

5. Which of the fourteen basic properties are not satisfied

by the set of integers; the set of even integers; the

set of odd integers; the number 0 all by itself; the

set of irrational numbers?

6. Explain why the square, x

be negative.

2
, of a real number x cannot

7. Prove the "invert and multiply" rule for dividing frac

tions.

1

8. What troubles arise if you attempt to interpret
0

or

10
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0 a

0
(or in general for any number a) as real numbers?

0

9. Johnny "proved" that 2 = 1 by this argument: Let a = b;

then

SO

whence

a2 = ab

a2 - b2 = ab - b2

(a+b)(a-b) = b(a-b)

and a cancellation of a - b from each side yields

a + b = b.

Now since a = b, we write 2b = b, so 2 = 1. Find the

hole in this argument.

10. Prove the trivial theorem that 1 # 0 in the field of

real numbers.
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3. Inequalities

A large amount -- probably too large an amount --

your early mathematical training has concerned equations,

solving them, manipulating them, reducing them, etc. But

for the necessary calculations in studying calculus, one

must be able and willing to work with expressions that are

not equal, or in some cases, nfDt necessarily equal. This

will enable us to make mathematically precise such loosely-

worded expressions as "all numbers between I and 2," or

"a is nearer to b than to c," or "the square roots of the

positive integers become arbitrarily large." Furthermore,

the language of inequalities is indispensable in discussions

of numerical error.

We have stated in RI2, RI3, and R14 enough to proceed

without delay. That is to say, just those properties about

the notion of positive numbers will be sufficient for a

systematic study of what can be done with numbers that are

not equal. For example, one can prove (as Trivial Theorem

3) that I is a positive real number. We express this by

writing I > 0.

12 25



www.manaraa.com

In general, x > 0 means that x is positive; and if x - y > 0,

we write x > y to express the fact that x is greater than y.

Thus, v. >3, 0 > -I, and 17 > -4 for the respective reasons

that n- 3, I, and 21 are positive.

The ">" symbol turned around means "less than": x < y

means that x is less than y and is equivalent to y > x. So

any statement concerning > has a counterpart involving <

Notice that, geometrically, a < b means that a lies to

the left of b on the number line, and this

a

is very often a useful picture which arises often in the

chapters to follow.

Now there are three operational rules which could serve

as Trivial Theorems 4, 5, and 6, and whose proofs are left

to the Problem section. They are

If x> y and y> z, then x> z

If z > 0 and x > y, then xz > yz

If z < 0 and x > y, then xz < yz

As with other statements, make sure you really understand

the sorts of uses one makes of these rules. The first one

allows us to write a string such as

a 13
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a>b>c>d>e

without any misunderstanding and to pick as we wish from

such a string any of several inequalities. For example,

one can deduce that b > e. (Avoid writing such things as

a > b < c, because it gives no information concerning any

relationship between a and c.) The second rule is nice,

allowing one to multiply an inequality by a positive number

without changing its sense. The third rule forces one to

change the sense of the inequality when multiplying both

sides by a negative number. Thus, 2 < 3, but (. > (-4)3.

The effects of subtracting and dividing are the substance

of Problems 6, 7, and 8.

The symbol > will be used to mean "greater than or equal

to," and likewise; < will mean "less than or equal to." Thus,

8< 17 and 8< 17 are both true, as is 8< 8.

In many instances, you will have occasion to construct

a string of relationships looking something like

A = B

< C

< D

< E = F

14 27
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where the capital letters will in some cases replace rather

complicated-looking expressions and in other cases might be

numbers. What we will generally be interested in is a

relationship between what we started with, A, and what we

ended with, F. Notice in this case that we can conclude

A < F, but we can also conclude A < F, which is a "stronger"

statement, thus generally more useful.

Probably for psychological reasons, you will see < and

< more often than > and >. This is undoubtedly because

we've been taught to operate from left to right, both in

reading and in plotting numbers. Thus, in thinking about

several numbers, one generally starts with the one occurring

first (i.e., the leftmost) on the line of real numbers. So,

in writing those relationships, the < symbol is somehow more

"natural."

Concerning notation, you will find phrases such as, "...

whenever a, b > 0" or some such thing. This means both

a and b are nonhegative.

15
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PROBLEMS

I. Prove that I is a positive real number. (Hint: use

Trivial Theorem 2 along with RI2 and R13.) From this

it follows that

... -3 < -2 < 1 < 0 < 1 < 2 < 3 ...

2. Prove that if m, n, p, q are positive then

m >
n q

if and only if mq > np.

3. Prove Trivial Theorems 4, 5, and 6.

4. Prove that if 0 < x < I, then x2 < x. On the other

hand, what can you conclude if you're given that

X2 < x?

5. Prove that if x > y, then x-z > y-z.

6. Prove that if x > y > 0, then 1 < .

X y

7. Prove that if x > y and z > 0, then
x

z

yT

8. Where can >

rules?

(or ) replace > (or <) in the inequality

16
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4. Absolute Value

We will often be concerned with the distance between two

points on the line, and since points correspond to numbers,

this concern is really with the "distance between x and y"

for any pair of real numbers x and y. One could write

d(x,y) to denote the distance between x and y, but the notation

lx-YI
is standard and fits in a framework of normal arithmetic;

besides, you will soon recognize that it makes common numerical

sense.

Notice first something trivial: the distance between x

and y is the same as the distance between y and x. Thus,

lx YI IY xl

We call Ix
yl the absolute difference of x and y. Notice

further that the distance between x and 0 is Ix - 01 , and

the above equation yields

lx - 01 = 10 - xl

but x - 0 = x and 0 - x = -x, so

11

30
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Clearly, 101 = 0; and if x / 0, Ix! > 0 because the distance

between x and 0 is positive. Thus, lx1 > 0 for all numbers

x. We call 1x1 the absolute value of x. Some examples are:

and a picture is

x

13-71

1271

17-31

1-271

= 4

= 27

= 4

= 27

Ix y1

y

Notice that we could have defined absolute value by

x if x >0

1x i= 0 i f x= 0

-x i if x < 0

and thus remain free of any appeal to geometry. Indeed, you

may have learned this version of the definition.

What is the distance between 3 and -2? By our analysis,

this is 3-(-2)1 = 13+2j = 151 = 5. In general, lx+YI

18 d



www.manaraa.com

represents the distance between x and -y. And it is natural

to ask If there exist any relationships pe-tween lx+yl,

lx-y( , Ix( , and lyl for arbitrary numbers x and y. There

do, and the language of inequalities tells which ones.

Consider numbers, a, b, and c as represented on the line.

There are two cases: either c lies between a and b or it

does not., It c lies between a and b, then

a

we have the equality

la-b = la-cl + lb -c

because the distance between a and b is the sum of the dis-

tance between a and c Lnd the distance between b and c. If c

does not lie between a and b,

then,

a

la-bl < la-cl + (b -cl

19

41'
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We can state in general, then, that

la-bl < la-cl + lb-cl

for any triple of numbers.

A series of replacements wi ll yield some equivalent facts.

First replace a-c by x, and replace b-c by y. Then since

a-b = (a-c) - (b-c), we must replace a - b by x - y. The

above statement then becomes

I x yl L I xl + I yl

Next, replace y by -z. Then we get

<

which is more simply written

lx+z I <
lx l

iz I

This last statement is classically called the triangle inequality

Now in this last statement, replace x + z by w, and then

z must get replaced by w - x and the triangle inequality becomes

20 3
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Iwl Ix] + Iw -xJ

which can be rewritten

1 w-x 1

>
1 w I lx 1

Also in the triangle inequality, we can replace x by u + v

and z by -v so that x + z gets replaced by u, and we obtain

so

ul
<

lu+vl + 1-v1 lu+v1 1v1

lu+v1 > lul - Iv!

In all these recent calculations, notice that a, b, c,

x, y, z, w, u, v are just numbers. We don't need all those

symbols to write down an organized list of the basic relation-

ships we've proved; using the fewest symbols, they are:

la+bl lal 1131

la+bl lal 1131

la-b1 < lal + 1bl

la-bl la! 1131

for any numbers a and b.

21 a
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Our concern has been centered on absolute values of sums,

and differences. What about products and quotients? An ex-

ample will be instructive enough. Suppose a = 7 and b = -12.

Then

lab 1 = 17(-12) 1 = 1-841 = 84

and la 1 = 171 = 7, 11)1 = 1-I21 = 12, whence

lalIbl = 7.12 = 84.

So in this case lab' = lalIbl . You can try other choices and

see in general that the absolute value of a product is the

product of absolute values. See problems 2 and 4.

In particular, 1a21 = 1a12 = a2, so that

'al =

This is important to remember, because in some calculations,

you may end up with the square root of a square of a number,

and you must be careful about what you then conclude.

One last inequality: suppose lx1 < K. Then this means that

if x > 0, then Ix! = x < K; and if x < 0, then Ix' = -x < K,

so x > -K. Thus, IxI < K can alternatively be written

22
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-K < x < K. In like manner, lx1 < K can be expressed by

-K < x < K.

233 r
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PROBLEMS

1. In the relations

la + bl lal + 1bl

la bl lal Ibl

la bl lal Ibl

la bl Q (a( Ibl

decide in each case when the equality sign holds.

2. Prove that if b 0 then

181 = fat

lb' Ibl

3. Deteradne which real numbers x satisfy:

(a) lx + 21 < 3

(b) Ix - 21 < 3

4. Prove in general that

labl = 1 al 1bl

14
37
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5. Intervals .

A combination of the ideas of inequality and absolute

value is handy in describing what are called intervals

on the line of real numbers. Problem 3(b) of the last

section demanded the determination of numbers x satisfying

Ix - 21 < 3.

There is both a geometric and an arithmetic approach to

solving this problem and it's terribly important for future

work that you learn to "see" the geometry and to carry out

the corresponding arithmetic.

Geometrically, if x satisfies Ix - 21 3, then just

recall that (x - 21 is the distance between x and 2. Thus,

Ix 21 < 3 means that the distance between x and 2 cannot be

more than 3. Thus, one can think

of starting at 2 and pro-

ceeding in either direction
-Z 0 3 4 5 6

FIGURE 5-1
for up to 3 units. Starting

at 2, all the numbers up to and including 5 will satisfy the

relation, along with all numbers down to and including -I.

A picture is given in Figure 5 -I.

25
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Arithmetically, the statement Ix - 21 < 3 can be analyzed

by using the last paragraph of Section 4. The statement

Ix - 21 < 3 is equivalent to the chain of inequalities
.....

-3 < x - 2 < 3.

Adding 2 all the way through yields

-I < x < 5

which simply says that the number x must be between -I and

5, inclusive.

In consequence, and by means of either the geometric or

the arithmetic approach, we end up with what is called a

closed interval. Its center is at 2 and its radius is 3.

If Ix - 21 < 3, the same procedures yield

-I < x < 5

and this set of points x is called an open interval. It also

is said to have center 2 and radius 3.

In either of the cases
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or

I < x < 5

we call the associated interval on the line half open. It

should be clear that neither of these intervals can be expressed

simply by a single inequality involving absolute values.

There are of course infinite intervals

5

FIGURE 5-2

consisting of all points to one side of, and possibly includ-

ing, a given point. The one in Figure 5-2 consists of all

points to the right of 5 and includes 5. This can be expressed

x > 5. The number 5 is excluded by x > 5.

The most common calculations you will be using with regard

to intervals will be of the form

lAl < B.

You have seen from the above considerations that this is

equivalent to writing
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-B < A < B.

With intervals, there is a matter of notation. It is

common to use [ -1,5] to mean the interval in Figure 5-1, i.e.,

all numbers x satisfying -I < x < 5. In general

[a,b] means all x for which a < x < b

(a,b] means all x for which a < x < b

[a,b) means all x for which a < x < b

(a,b) means all x for which a < x < b

Ca,a0 means all x for which a < x

(a,0.) means all x for which a < x

(-co,a] means all x for which x < a

(-co,a) means al l x for which x < a

(-0.,0.) means all real numbers.

For each of the first four cases, the midpoint of the interval

is its center, and half its length is the radius.

There is an aspect of intervals which involves averages.

The term average, or mean, is ambiguous, for there are several

ways in which those words are used. There is the arithmetic

mean of two numbers, a and b. This is a number which when

added to itself yields a b, and that's of course
a b

2

There is also the geometric mean of two positive numbers a

4!
28
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and b. This is a number which when multiplied by itself yields

ab, and that's of course ICC. (By the way, V;Talways means

the positive number t for which t2 = x.) A relationship

between the arithmetic mean and the geometric mean of two

positive numbers exists, and it can be viewed by means of

intervals.

Let a and b be positive unequal numbers, and consider

intervals of length a and b, placed side-by-side, as in

Figure 5-3. At the midpoint M of

the entire interval can be drawn a a
+ b

semicircle of radius
a

2
, the

arithmetic mean of a and b. You

can check to see that the right

triangle depicted in Figure 5-5 has

+ b
ab as one side and

a

2
as the

hypotenuse. Thus

< a + b
2

Problem 4 completes this issue by

removing the demand that a X b.

We can always conclude that

a + b
2

29

FIGURE 5-3

a M b
FIGURE 5-4

....../ ...
.// .i/

I ab a+b \
I 2.
I

i

a M b

FIGURE 5-5



www.manaraa.com

PROBLEMS

I. Determine and sketch all intervals (if any) corresponding

to

(a) Ix + 21 < 3

(b) Ix 21 > 5

(c) lx 21 < 3

( d ) I x 21 <3

(e) Ix 21 < -3

(f) Ix 21 < Ix 31

(g) 0 < 1x-21 < 3

(h) (x5 + 31x)100 (x-2) < 0

2. Prove (by the Pythagorean Theorem) that Figure 5-5 is

labeled correctly.

3. Prove the arithmetic mean - geometric mean inequality by

considering

(1/ - 1/17)2.

4. Prove,for a and b positive, that ab a
2

b if and only if

a = b.

31
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6. Functions

In your previous school courses, you have dealt with

functions of various sorts, particularly in studying logarithms,

trigonometry, and so forth. Some reminders here should be

of help in recalling the essence of the function concept.

The essence of this concept can be put in the nutshell

of an example. Consider the sentence, "The area of a square

is a function of the length of one of its sides." Think

about this for a minute.

In the first place, that sentence begins with "The area,"

to denote that precisely one thing is being determined (by

the length of a side). That is to say, a function embodies

the idea of an "unambiguous designation." A given square has

precisely one number associated with it which is designated

as its area, and we're saying that this number is unambiguously

designated in some manner by knowing the length of a side.

In the second place, the sentence under scrutiny does

not talk about just one particular square. It concerns any

square whatsoever, and this is the second basic idea embodied

31

A :c



www.manaraa.com

In the function concept. It isn't that a function makes

just a single unambiguous designation, but rather that a

function makes a bunch of unambiguous designations.

Thus, we could write A(S) to meal the area of square S;

and if S has Its sides each of length a, the well known formula

for this whole bunch of unambiguous designations could be

written

A(S) = a 2

to spell out (more specifically) that the area of any square

Is determined by the length of one of its sides.

If only certain squares were under consideration, a

table would suffice. For excmple

length of side I 2 3 5 7 II 13 17

area of square I 4 9 25 49 121 169 2891

One could think of a function as a collection or "set"

of ordered pairs, wherein the first member unambiguously

designates the second member. Thus, the idea of A(S) = a2

could be written (a,a2) where the first member designates

the length of a side and the second member designates the

area of the corresponding square.

32
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Roughly speaking, then,a function assigns to each of

certain numbers a uniquely-determined corresponding number.

We will use letters, such as f, to refer to the functions.

The symbol f(x) will designate the number corresponding to

the number x. The number f(x) is called the value of the

function f at x; or, sometimes, f evaluated at x.

We've already studied one function a little bit, the

absolute value function. It assigns to each number x the

number Ix' . In signaling that one is about to work with

this function, it is customary to write "Suppose f(x) = lx1-.-"

or some such phrase.

In general, it is usually sufficient to simply reveal

what f(x) is, for that carries implicitly the necessary

information one needs about the correspondence under study.

That is to say, rather than writing, "Consider the function

which assigns to each number its square," we will be content

with the shorter "Let f(x) = x2 ." And sometimes you will

see "the function x2 ."

With each function, there is associated a set of numbers

called the domain of the function. These are the numbers x

for which we wish to study the functional values f(x). We

say that f is defined on or sometimes (for geometric reasons)

over its domain. For example, one might wish to study the

3341)
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behavior of f(x) = Ix' for -I < x < I. In such a case,

the domain will be specified explicitly. If the domain is

not so specified, then we assume the domain to be the set

of all numbers for which f(x) makes sense. With this agree-

ment, the function f(x) = with no domain specified

automatically has as its domain [0,0,).

Given a function and its domain, there is another set

of numbers, called the range of f. It is simply all the

numbers f(x).

Notice that we have not stated that f(x) need be

expressed by a formula, though that was indeed the case in

the examples given. For instance, one can define a function

f by stipulating that f(x) = x2 if x is an integer and

f(x) = 0 if x is not an integer. In this case, the domain

of f is the set of all real numbers and the range is the set

0, I, 4, 9, 16, . of squares of integers.

You will need to become familiar with various forms

of the word map and their mathematical usage, for they

simplify many otherwise cumbersome phrases. One says that

f maps its domain onto its range: for each number x in the

domain of f, the function "sends x into f(x)" as suggested by

34 47
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(Presumably this comes from map making wherein the mapmakers

send Podunk onto an appropriately-placed dot on a piece of

paper.) This arrow notation will be used from time to time.

Thus, x2 maps the real numbers onto the nonnegative

numbers; I maps the nonnegative real numbers onto the

nonnegative real numbers; IX] maps [-1,1] onto [0,1]; 1/7

maps 9 onto 3 (you see, we also use this terminology for any

part of the domain); lx1 maps (-1,0) onto (0,1).

Sometimes the "onto" terminology gets abandoned in

favor of the looser "into." If f maps (any part of) its

domain onto certain numbers S, then it maps those numbers

Into any set of numbers containing S. Thus, x
2 maps (-1,1)

into [0,1], or into [0, 00) for that matter, since it maps

(-1,1) onto [0,1). Again, /7 maps the positive integers

into the positive real numbers, and lx1 maps the real

numbers into the real numbers. The into terminology, then,

admits a certain amount of sloppiness, but sometimes that's

all that's needed in expressing our idea. You will note
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that all the functions we will deal with map selected parts

of the real numbers into the real numbers. That is why they

are called real - valued functions. A variable is a (generally

unspecified) member of the domain of a function, and so our

functions are real - valued functions of a real variable.

Functions can be "looked at" graphically, and certain

insight about functions can often be gained in a geometric

setting. Recall from your earlier training the coordinate

system in the plane.

(-,+)
Every point has a name

(3,4)

in terms of an "axis of

abscissas" (often called

the X-axis, a line of
I I I I(0

real numbers viewed -

horizontally) and an "axis

of ordinates" (the Y-axis, (2;-3)

a line of real numbers (+,-)

FIGURE 6-I

viewed vertically). The

number 0 on each line is placed at a point called the origin,

and positive numbers are to the right along the X-axis and

extend upward along the Y-axis. Then the point of the plane

which is reached by going three units to the right of the

origin and then four units up is labeled, as in Figure 6-1,

(3,4). The points (2, -3) and (0,0), the origin, also appear

in Figure 6-1. A "general" point is often labeled (x,y), a
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reminder that each point in the plane is named by giving its

abscissa first.

(You have by now noticed that the single symbol (3,4)

can mean a point in the plane or an open interval. This is

all right, though: a confusion never arises, because the

context in which the symbol

clear.)

appears makes the meaning

In the coordinate plane, the graph of f is the set of

all points of the form (x, f(x)) for x in the domain of f.

Figure 6-2 illustrates a "general" point of the graph of some

function f. The number x

appears of course on the

X-axis and the value of f

at x appears on the Y-axis,

and the pair (x, f(x)) fix) -4t(X,f(x))

shows up as a point in the

plane. This means that the
FIGURE 6-2

domain of f is a subset of

the X-axis, and will in our

work most often be an interval.

The range of f is a subset of the Y-axis.

Since a general point in the plane has coordinates

(x,y), and since a general point on the graph of f is given
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by (x, f(x)), the usage y = f(x) has arisen and is often

used in discussing functions, functional values, and graphs

of functions.

For f(x) = lx1 over the interval [-1,I], the graph is

shown in Figure 6-3. Make sure that you both see it and "see"

it. In this case, it was

possible to display the entire

graph. However, the situation

is often complicated by dint

of impossibility: you couldn't

hope to graph Ix' for all

real numbers x. In those

cases, an incomplete picture

fixing on the idiosyncracies

of the function under study is pictured, and you must become

adept at graphing functions to display those items of interest.

FIGURE 6-3

There are two "simplest" types of functions (simplest

in the sense that calculating functional values constitutes

absolutely no effort of any sort).

Constant functions are of the form f(x) = k for a fixed

number k. The domain is the set of all real numbers and the

range is the single number k. For f(x) = -2 every point on

its graph has the form (x,-2) and is sketched in Figure 6-4.

. 31
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The graphs of all the con-

stant functions are of course

ad;allel to the X-axis, and

the X-axis itself is the

graph of the constant function

y = 0 . It is difficult to

think of more to say in

describing constant functions.

)16-2
-3

FIGURE. 6-4

x

The identity function is of the form f(x) = x. This

just maps each x onto itself, i.e., f "does nothing" and

thus has the distinction of being the laziest of all functions.

The domain is the set of all real numbers, and so is the
Y.

range. Each point of the

graph of the identity function

is of the form (x,x), so

y = x describes the geometric

situation, shown in Figure 6-5.

Functions, as well as FIGURE 6-5

X

numbers, admit of algebraic operations. If f and g are

functions, then a new function called the sum of f and g

and written f + g can be constructed. This is accomplished

"pointwise": if x is a number, the value of f + g at x is

obtained by adding the numbers f(x) and g(x). This means of

course that x must be both in the domain of f and in the
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domain of g (hence in the intersection of those domains).

Thus, the definition of the sum of two functions may be

expressed in the equation

(f g)(x) = f(x) g(x).

Geometrically, the graph of the sum of two functions

is obtained by summing ordinates at each point x on the

X-axis. The geometric general rule is pictured in Figure 6-6.

f
9(x)

x

FIGURE 6-6

Cf+gloo

; f ova

x

where the x is the same in each of the three parts. One can

thus plot the graph of f g by graphing both f and g on the

coordinate plane and "eyeballing it" from there on out.

Figure 6-7 depicts the

graphs of the f(x) = 1x1
-b

and g(x) = -2 along with
4
/

,f + g)(x) which is also \,\.2*

written lx1 - 2. Figure 6-8 711111r
shows the sum of the functions

y = x and y = 1x1 , which of

course coincide for x > 0,

41
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along with their sum

y = x + lx1 . Notice that

this resulting function could

also be given by

f(x) =
I0 for x < 0

2x for x 0 FIGURE 6-8

The product fg of two

functions f and g is also defined pointwise. For each point

x in the intersection of their domains, the value of fg at x

is simply f(x)g(x). Thus

(fg)(x) = f(x)g(x).

With a little practice, an eyeballing procedure can be used

to plot fg from the separate graphs of f and g. Figure 6-9

depicts (fg)(x) where f(x) = 1x1
and g(x) = -2. Figure 6-10

does the same for y = lx1 and the identity function y = x,

900 u-

FIGURE 6-9

41
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obtaining y = x. 1x1 , this time without labeling anything.

Make sure you "see" it.

Notice that this means for any function g, such expressions

as 2g, hg, and in general kg for a fixed number k are well-

defined. You simply take the product fg where f(x) = k, a

constant function. Thus, -g makes sense, and so does - g,

the sum of f and -g. So differences of functions can be

calculated also.
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PROBLEMS

I. Sketch the graph of

(a) f(x) = x
2 over [-1,1]

(b) y = x + 2

(d) f(x) = 2x

(e) f(x) = 2x + x
2

(c) f(x) = x 2
+ 2 (f) y = x 3

2. Write down an expression for (f+g)(x) in each case and

plot the graphs of f, g, and f + g.

(a) f(x) = x

(b) f(x) = x

(c) f(x) = (xi

(d) f(x) = x 3

g(x) = x

g(x) = 2

g(x) = -2x

g(x) = lx1

3. Repeat Problem 2 for (fg)(x).

4. We have given meaning to 2f as the product of f and a

constant function. How does this compare with f + f?

435f;
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7. More on Functions.

A class of functions called polynomials is built up by

starting with the two simplest types of functions, constant

functions and the identity function, and constructing from

them more complicated functions by the operations of sum and

product of functions. For example

-2, x, 9

are polynomials; so are

-2 + x, -2x, -18 + 9x, x2, 4x - 2x3,

+ 3) (2 - 7), 3 + x(I - x(2 - 2x))

((2x - 3)(3x) + (x2 - x)(x + I))(x2 + x).

(1)

It is evident that any expression of the form

P(x) = c
0

+ clx + c2 x2 + . + c x
n

,

where c0,c1,c2,..,cn are constants, is a polynomial. Con-

versely, it is easy to check that any polynomial can be

written in the form (I); we merely have to multiply out,

remove all parentheses, and collect like powers of x. Thus

the last two of the above examples become

3 + x -1/x2 + 2x3,

0 + Ox - 10x2 - 4x3 + 7x4 + x5.

44 5 7
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Because of this property it is customary to take equation (I)

as the definition of a polynomial. Thus we define: A

function P is a polynomial on a given domain if there are an

integer n and constants c0,c1,c2,...,cn for which (I) is

true for all values of x in that domain.

constants c0,c1,c2,...,cn are called the coefficients

of the polynomial; in particular, ck is the coefficient of

the term c xk, k = I,2,...,n and c 0 is the constant term. In

writing a polynomial it is customary to omit terms with zero

coefficients, so that the last example above would be written

-I0x2 - 4x3 + 7x4 + x5.

The polynomial with all coefficients zero is written simply

as 0.

Every polynomial except 0 has a degree, which is the

greatest exponent of x appearing in the polynomial after

terms with zero coefficients have been removed. Here we

agree that x = x
I and c0 = c0x0. The degrees of the II

polynomials in the above example are respectively 0, I, 0,

I, I, I, 2; 3, 2, 3, 5. Polyncmials of the
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form ax + b, where a and b are numbers, are called linear

(their graphs are straight lines) and are said to have

slope a.

Functions in general (and polynomials in particular)

may have zeros (also called roots). A zero of the function

f is any number r for which f(r) = 0. The zeros of a function,

then, appear on its graph as places where the graph touches

or crosses the X-axis.

In addition to describing sums and products of functions,

quotients may also be defined. If f and g are functions,

then
f is defined, as you've probably already guessed, by

(x)
(±)(x)

f

whenever this makes sense. Of course, then, the zeros of g

are excluded from the domain of L. If P and Q are polynomials,

then we call the function a rational function. in working

with quotients of functions, some fine distinctions must be

made. For example, if f(x) = x2 - 4 and g(x) = x - 2, then

does not have 2 in its domain. Except for x = 2, however,

this function is the same as h(x) = x + 2, which does have

2 in its domain.

-1.,-;\ 46 59
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The graph of may be sketched by viewing the separate

graphs of f and g, and this again requires practice. The

thing to remember is that large denominators produce small

quotients and that small denominators produce large quotients.

The function X arises by choosing f(x) = I
and g(x) = x, and

its graph is displayed in Figure 7-1, this time without the

separate graphs of f and g, which you should by now see through

the eye of your mind. Other

practice is provided in the

problem section.

Now we present some new

functions to play with. They

are quite a bit different from

the ones we've thus far faced.
FIGURE 7-I

The greatest integer function arises as a result of

realizing that every real number x (77.in be expressed uniquely

as

x = n + p,

where n is an integer and 0 < p < 1. For example,

5 = 2 + 7

5 = -3 +
2 2

41 60
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if = 1 + 0.414...

If = 3 + 0.14159...

17 = 0 +

6
7

The greatest integer function maps each real number x onto n

and n is called the greatest integer in x; this integer is

designated [x]. Thus, ED = 2, 1- = -3, = I, and

so on.

A partial graph

of the greatest

integer function

is shown in Figure

7-2. Its "shape"

is suggestive of

steps, and this

is just one example

of what are known

as step functions.
FIGURE 7-2

Note that the domain

of f(x) = [x] is the set of all real numbers and the range

is the set of all integers.

I"4" -3 -2 -1 I 2 3 4

The fractional part function is closely associated with

the greatest integer function: it maps each number x onto

43 6!
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p in the aforementioned representation of x as n + p,

where n is an integer and 0 < p < I, so it's pictured

and p is called the fractional part of x. The notation for

5
p is ((x)), so that ((-2 )) =

I ((- .1)) =
2 ,

(($/2 )) = 0.414...,."

and so forth.

For those who've worked with logarithm tables, [x] is

called the characteristic of x, and ((x)) is called the

mantissa of x.

Figure 7-3 shows a partial graph of the fractional part

function f(x) = ((x)), and you will, from the definition of

this function, note that

the domain is the set of

all real numbers and the ///:1/ X
-3 -2. -I I

range is [0,1).
FIGURE 7-3

The circular functions require a reminder of the Pythagorean

Theorem and its consequences in the coordinate plane. Suppose

(a,b) and (c,d) are the coordinates of any two points in

the plane. The shortest distance between those points

may be obtained by considering, as in Figure 7-4, a right

triangle with the segment between those points as the

hypotenuse. Make sure you agree with all of the labels

49
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in that figure. Then the

distance D between (a,b)

and (c,d) is obtained from

the Pythagorean equation.

D2 = (a -c(2 (b -d(2

= (a-c)2 (b-d)2

so that

D = (a-c)2 + (b-d)2

FIGURE 7-4

Now let us consider a circle with center at (0,0) and

radius I. We call this the unit circle. This circle shown

in Figure 7-5 consists of all points

(x,y) at a distance I from (0,0),

so that the distance formula yields

I = (x-0)2 + (y-0)2

= ix2 + y2

whereupon (squaring both sides)
FIGURE 7-5

we obtain the following relationship between the first and

second coordinates of all the points on the circle:

2X 4. y2 = I.
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With these preliminaries out of the way, let u be any

real number. Its distance from 0 is of course lul. Imagine

one end of a ruler being "planted" at the point (1,0) on the

unit circle, and imagine further the ruler being "rolled along"

the circle without sliding until the point corresponding to

Iul on the ruler is reached, with

the agreement that if u > 0, then CCO3 U., 5in 14.),,

we proceed rolling counterclockwise,

and if u < 0, we proceed clockwise

along the circle. Figure 7-6

corresponds to a positive value of

u. If u = 0, of course, we remain

at (1,0).
FIGURE 7-6

In any case, the point lid on the ruler ends up at

some point on the circle, and we define cos u to be the

abscissa of that point and sin u to be the ordinate.

The sine function is defined by f(x) = sin x. Its domain

is the set of all real numbers, and its range is the interval

[-1,1]. You've memorized that the circumference of a circle

is 2nr, so the circumference of the unit circle is 2w. A

FIGURE 7-7

51
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little thought about traversing the unit circle will be enough

to convince you that a partial graph of the sine function is

presented in Figure 7-7.

The cosine function is defined by f(x) = cos x. Like the

sine function, it maps the real numbers onto [-1,1], and its

graph is sketched in Figure 7-8.

FIGURE 7-8

X

The tangent, cotangent, secant, and cosecant functions

are defined by taking quotients of the two basic circular (or

trigonometric) functions sine and cosine. Their abbreviation

are suggestive enough to write the definitions as follows:

tan x =
sin x
cos x

cot x
cos x

x

1sec x = csc x
cos x sin x

This presentation of the trigonometric functions as real-

valued functions of a real variable departs from the more

common presentation via angles, degrees, triangles, etc.

However, all the usual trigonometric identities you learned

earlier still hold, and you should use them freely.

6;
52
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We end this section with some language we will use to

describe certain sorts of functional behavior.

A function which has the property that a < b implies

f(a) < f(b) is called increasing. Thus the identity function

and the constant functions are increasing, and some more

examples are

on [0,1]

on [0,m)

on [0,1)

and it should be obvious that if a function is increasing on

its domain, then it's increasing on any part of its domain.

The sine and cosine functions are not increasing (ex,-. ' on

selected subsets of their domains).

If a < b implies that f(a) f(.3) then the function f

is called strictly increasing.

Similarly, if a < b implies f(a) > f(b), then f is

decreasing; and the term strictly decreasing is reserved for

those functions for which a < b implies f(a) > f(b).

Functions which are either increasing or decreasing are

called monotone.

53
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In general with regard to functions, situations will

arise in which one might wonder if extreme cases are to be

included, and the word "strictly" will be used to exclude

extreme cases.

54 67
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PROBLEMS

1. What is the degree of the polynomial

(x2 + 7x + 1)(x2 - 7x + I) - x4?

2. Prove that the degree of the product of two polynomials

is the sum of their degrees, and that the degree of

the sum is at most the larger of the two degrees.

3. Plot the graph of for each of the pairs of functions
9

in Problem 2 of the previous section.

4. Show by example that there exist functions f, g, and h

for which gh = f but 1 / h. Is it, on the other hand,
9

true that if . h, then gh = f?
9

5. Prove that each real number x can be expressed in only

one way as

x = n + p

where n is an integer and 0 < p < 1. (Hint: show that

if x = m + q where m is an integer and 0 < q < 1, then

n = m and p = q.)

6. What function is the sum of the greatest integer function

and the fractional part function?

55 68
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7. Sketch graphs of the other trigonometric functions.

8. Sketch the graphs of

(a) f(x) = x + sin x

(b) f(x) = [sin x]

(c) f(x) = x sin x

(d) f(x) = ((sin x))

69
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8. Composition and Inverses

Thus far, we have carried out only algebraic operations

with pairs of functions: f+g, f-g, fg, and 1. One more

operation needs to be discussed, and it is not algebraic.

We present first an example.

Let f(x) = x' and g(x) = x +l. We evaluate f at 2 and

then proceed to evaluate g at f(2): first, f(2) = 4 and

g(4) = 5. In general,

g(f(x)) = f(x) + I

= x 2 +

We label the function thus obtained g(f), so that

(g(f))(x) = g(f(x))

and we call g(f) the composition of f and g. The f comes

first in this phrase because the picture is

'x f> f(x) g(f(x))

->tice that the composition of f and g is not neces5:3,:lly

the same as the composition of g and f. Indeed, the ex.Eflple

we started with yields

51
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(f(g))(x) = f(g(x))

= (g(x))2

=(x+I)2 = x2 + 2x + I.

The graph of f(g) can seldom be obtained from a hurried

view of the graphs of the separate functions involved. This

is because f(g) is evaluated at numbers which are in the

range of g.

We give some examples:

(a) f(x) = lx1; g(x) = -x. Then

(f(g))(x) = I -xI = IxI
= f(x) and

(g(f))(x) = -1x1 = -f(x).

(b) f(x) = sin x; g(x) = x2 . Then

(f(g))(x) = sin x2 and

(g(f))(x) = (sin x)2 which is usually written

sin2x.

(c) f(x) = [x]; g(x) = ((x)). Then

(f(g))(x) = [((x))] = 0 and

(g(f))(x) = (([x])) = O.

51
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(d) f(x) = sin x; g(x) = . Then

1(f(g))(x) = sin )--(- and

(g(f))(x) = sin x
csc x.

(e) f(x) = x; g(x) = x2 + sin x + [x]. Then

(f(g))(x) = x2 + sin x + [x] and

(g(f))(x) = x2 + sin x + [x].

Example (e) was selected in a complicated enough way

that you should be convinced that any function composed with

the identity function remains unchanged.

Another example is

7
f(x) = 2x + 7; g(x) = yx - -2- . Then

g(f(x)) = x, the identity function.

In general, if g is any function such that g(f) is the

identity function, then g is called the inverse of f and we

write f to denote this inverse. Schematically, this means

that for any x in the domain of f we have

f
-1

x f(x) x

59
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Do not confuse f
-1 (x) with f(x)

-1 7
7 ,f (x) = 7x

but

f(x) 2x + 7

In the last example,

and these are clearly not the same functions.

Notice that not all functions have inverses. For example,

f(x) = 7 has no inverse function. You should be able to see

that the greatest integer function has no inverse.

It is very important that you give special attention to

Problems 5, 6, and 7.
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PROBLEMS

I. What are the zerori the sine and cos Lie finctions?

2. What are the zeros of sin I ?

3. Sketch the graph of sin

4. Write an expression for the inverse of f where

(a) f(x) = x2

(b) f(x) = x2 + I

(c) f(x) = -x

5. See if you can prove that if a function is strictly

increasing, then it has an inverse. It's not very hard

to do.

6. Does a strictly decreasing function have an inverse?

7. Let f be a strictly increasing function. Plot f and

its inverse on the same coordinate axes, and compare

them with the graph of the identity function. Do you

notice anything?
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Chapter I

BASIC COMPUTER CONCEPTS

1. Algorithms and Flow Charts

A distinction should be made between the study of

computers and the study of computing. The study of compu-

ters deals with the design of large complex networks of

circuits and electronics that make up a computer. You

will learn very little about that in this book. The sub-

ject of computing, on the other hand, deals with the

organizing of problems so that computers can work them.

As we shall see, this topic consists primarily of the

study of algorithms -- learning not only to understand but

also to construct and improve them.

What is an algorithm? An algorithm is a list of

instructions to carry out some process step by step. A

recipe in a cook book is an excellent example of an algo-

rithm. Here the preparation of a complicated dish is

broken down into simple steps that every person experi-

enced in cooking can understand. Another good example of

an algorithm is the choreography for a classical ballet.
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Here an intricate dance is broken down into a succession

of basic steps and positions of ballet. The number of

these basic steps and positions is very small, but by put-

ting them together in different ways, an endless variety

of dances can be devised.

In the same way, algorithms executed by a computer

can combine millions of elementary steps such as additions

and subtractions, into a complicated mathematical calcula-

tion. Also, by means of algorithms, a computer can con-

trol a manufacturing process or coordinate the reserva-

tions of an airline as they are received from ticket

offices all over the country. Algorithms for such large

scale processes are, of course, very complex, but they are

built up of pieces as in the example we will now consider.

If we can devise an algorithm for a process, we will

see that we can usually do so in many different ways.

Here is one algor ror the every-day process of

changing a flat tire.

Algorithm for Changing a Flat Tire

I. Jack up the car.
2. Unscrew the lugs.
3. Remove the wheel.
4. Put on the spare.
5. Screw on the lugs.
6. Jack the car down.

66 I 7
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We could add a lot more detail to this algorithm. We

could include the steps of getting the materials out of

the trunk, positioning the jack, removing the hub-caps,

loosening the lugs before jacking up the car, etc. For

algorithms describing mechanical processes, it is general-

ly necessary to decide how much detail to include. How-

ever, the steps we have listed will be adequate for

getting across the idea of an algorithm. When wt:: get to

mathematical algorithms, we will have to be much more

precise.

A flow chart is a diagram

for representing an algorithm.

In Figure I-I, we see a flow

chart for the flat tire algo-

rithm. The

I START AND

in the flow chart remind us of

the buttons used to start and

stop a piece of machinery.

67

Jack up the car

4 2

Unscrew the lugs

4 3

Remove the wheel

4

Put on the spare

4 5

Screw on the lugs

6

Jack the car down

FIGURE 1-1
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( The spare is flat )

Each instruction in the flow chart is enclosed in a frame

or "box". As we will soon see, the shape of the frame

indicates the kind of instruction written inside. A oc-

tangular frame indicates a command to take some action.

To carry out the task described by the flow chart, we

begin at the start button and follow the arrows from box

to box executing the instructions as we come to them.

After drawing a flow chart, we always look to see

whether vie can improve it. For instance, in the flat tire

flow chart, we neglected to check whether the spare was

flat. If the spare is flat, we will not change the tire

but will call a garage instead. This calls for a decision

between two courses of action. For this purpose, we

introduce a new shape of frame into our flow chart.

Inside I-he frame we will write an assertion instead of a

command.

This is called a decision box and will have two exits,

labelled T (for true) and F (for false). After checking

68 9
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the truth or falsity of the assertion, we choose the

appropriate exit and proceed to

The spare is flat

F

Change the tire

the indicated activity.

T

1

Call a garage

Insetting this flow chart fragment into Figure I-I,

we obtain the flow chart in Figure 1-2.

There is still another

instructive improvement pos-

sible. The instruction in

box 2 of our flow chart in

reality stands for a number

of repetitions of the same

task. To show the addition-

al detail we could replace

box 2 by:

Unscrew a lug

Unscrew a lug

Unscrew a lug

4

Unscrew a lug

4,

Unscrew a lug

69

0

The spare is flat ;)

1

T

Jack up the car

2

Unscrew the lugs

3

Remove the wheel

4

Put on the spare

5

Screw on the lugs

6

Jack the car down

8 0

-

V 7

Call a

garage

(Top

FIGURE 1-2.
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The awkwardness of this repeated instruction can be

eliminated by introducing a loop.

As we

right back

leave the

to repeat

leads us

are

Unscrew a lug

the arrow

we

box, we

the task

find that

again. However,

caught in an endless loop as we have provided no way to

get out of the loop and go on with the next task. To rec-

tify this situation, we again require a decision box, as

follows:

2)--

All the lugs have
been unscrewed

Unscrew a lug

Replacing box 2 of our flow chart with this mechanism

and making a similar replacement for box 5, we get the

final result shown in Figure 1-3.

, 10 8
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Now that you have fol-

lowed the development of the

flat tire flow chart, try to

devise one of your own. In

the algorithm of the fol-

1...wing exercise, you will

probably discover some de-

cisions and loops. There

are many different ways of

flow charting this algo-

rithm, so probably many

different looking flow

charts will be submitted.

0

The spare is flat :) T

iF

IJack up the car

8

(:

All the lugs have ..s\FT_

been unscrewed

F 9

Unscrew a lug I

Remove the wheel

4

Put on the spare

10

All the lugs have
been unscrewed

F

Screw on a lug

3

Jack the car down I6

7

Call a

garage

STOP

FIGURE 1-3
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PROBLEMS

1. Prepare a flow chart representing the following

recipe.

Mrs. Good's Rocky Road

Ingredients:

1 cup chopped walnuts

T lb. block baker's chocolate

2- lb. marshmallows cut in halves

3 cups sugar

cup evaporated milk

t cup corn syrup

1 tsp. vanilla

T lb. butter

2 tsp. salt

Place milk, corn syrup, sugar, chocolate, salt in a

four-quart pan and cook over high flame stirring con-

stantly until mixture boils. Reduce to medium flame

and continue boiling and stirring until a drop of

syrup will form a soft ball in a glass of cold water.

.Remove from flame and allow to cool 10 minutes. Beat

in butter and vanilla until thoroughly blended. Stir

in walnuts. Distribute marshmallow halves over bot-

tom of 10" square buttered baking pan. Pour syrup

over marshmallows. Allow to cool 10 minutes. Cut

in squares and serve.

12
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2. A Numerical Algorithm

Now we are ready to look at an alyu. .rhm for a math-

ematical calcufttir,- As a first example, we will take

the problem of .1 ; terms of the Fibonacci sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

In This sequence, or list of numbers, the first two terms

are given tc be 0 and 1. After that, they are constructed

according -ro the rule that each number in the list is the

sum of the two preceding ones. Check that this is the

case. Thus, the next term after the last one listed above

iS

34 + 55 = 89.

Clearly, we can keep on generating the terms of the se-

quence, one after another, for as long as we like. But in

order to write an algorithm for the process (so that a

computer could execute it, for example), we have to be

much more explicit in our instructions. Let's subject the

process to a little closer scrutiny.

To the right is a table showing the computation of

13
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the Fibonacci

sequence.
Next Latest

Term
Latest
Term

Sum

0 1 0 I- 1 = 1

1 1 1 + 1 = 2

We can 1 2 1 + 2= 3

2 3 2 + 3 = 5

see that in .3 5 3 + 5 = 8

5 8 5 + 8 = 13

each step the 8 13 8 + 13 = 21

latest term becomes the new next latest term

aud the sum becomes the new latest term.

Let's construct a flow chart (Figure 2-1) for finding

the first term to

exceed 1000 in the

Fibonacci sequence.

Aff-er 64 steps

which take us

through the loop of

flow chart boYes

2-5 fifter- times,

we eventually

emerge from box 3

at the T exit and

proceed to box 6.

This box is seen to

have a different

shape because it

calls for a

Initially take the next-
latest term to be 0 and
the latest term to be 1.

2

FFnd the sum of the latest
term and the next-latest
term.

CThe sum is greate T

than 1000.

3

F 4

Now demote the latest
term to the role of
next-latest term.

5

Now let the sum just
calculated be designated
as the latest term.

4 6

Write down
the value of
the sum.

FIGURE 2. -I
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different kind of activity -- that of writing down our

answer. The shape is chosen so as to suggest a page torn

off a line printer, one of the most common computer output

devices.

O
O
O
O
O
O
O

1597

15

8 G

O
O
O
O
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3. A Model of a Computer

The algorithm considered in the preceding section can

be presented in much simpler notation which is at the same

time more nearly ready to be given to a computer as a set

of instructions. To do this, we need to introduce a con-

ceptual model of how a computer works This model is

extraordinarily simple--childishly so, in fact. It is

amazing but true that such a simple view of how a computer

works is completely adequate for this entire course. We

will present a more realistic picture of a computer in

later sections of this chapter--but only to satisfy your

curiosity, not because we have any real need of it.

Variables. In computing work, a variable is a letter

or a string of letters used to stand for a number. In

the formula

A =LxW

the fetters A, L, and W are variables. In the formula

DIST = RATE x TIME,

DIST, RATE, and TIME are variables.

76
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At any par;icular time, a variable must stomd for one

particular number called the value of the variablr,.

Although at any time the value of a variable is one par-

ticular number, this value may change from time to time

during a computing process. The value of a variable may

change millions of times duri the execution of a single

algorithm.

In au: conceptual model of a computer, we will asso-

ciate with each variable a window box. On the top of each

box the associated variable is engraved. Inside each box

is a strip of paper with the present value (or current

value) of the variable written on it.

Each box has

a lid which may be

opened when we wish

to assign a new

value to the vari-

able. Each box

,35 a window 'n the sid3 so that we may read the value of

a variable with no danger of altering tree value. These

FIGURE 3-I

window boxes constitute the memory of our computer.

Figure 3 -I, we see the course of executing the Fibonacci

sequence algorithm of the preceding section. Here NEXT
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stands for "next to last term" and LATEST stands for

"latest term".

The Model and How It Works. We visualize a computer

as a room with a numoer of window boxes in it and a staff

of three workers--the master computer and two assistants,

the assic'ner and the reader. The master computer has a

flow chart on

his desk from

which he gets

tions, ac-

assireit

Pci:tt flgaak

his instruc-

cording to

w. ch he

elegu;-es

c. tasks

to his assistants. (In a real computer the tasks of these

workers are performed by electronic circuits.)

To see how this team operates, let us suppose that

the computer is in the midst of executing the Fibonacci

sequence algorithm of Figure 2-I. One of the instructions

in this algorithr was:

2

Find the sum of the
latest term and the
next-latest term

18 89
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In a simplified flow chart notation, this instruction will

take the form:
2

ISUM (LATEST + NEXT(

Inside this flow chart box, we find an assignment

statement. Reading this statement aloud we would say,

"Assign to SUM the value of LATEST + NEXT", or more simply,

"Assign LATEST + NEXT to SUM". The left-pointing arrow is

called the assignment operator and is to be thought of as

an order or a command. Rectangular bo,..es in our flow

chart language will always contain asFAgnment statements and

will therefore be callnd assignment boxes.

Now lot's see what takes place when the master comput-

er comes to this statement in the flow chart. We shall

assume that the variables LATEST and NEXT (but not SUM)

have the values seen in Figure 3-I.

.1-e computation called for in the assignment state-

men ccurs on the right-hand side of the arrow, so the

master compJter looks tnere first.

S'.1M (-i i 4 If 1 r1E7/T i

, 1,
x

.',;

He sees that he must know the values of the variLios.

79
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LATEST and NEXT so he sends the reader out to fetch these

values from memory.

The reader then goes to the memory and finds the win-

dow boxes labeled

LATEST ,'rid NEXT.

He reads the

values of these

variables through

the windows, jots

the values down,

and takes them

back to the master

computer.

The master

computer computes

the value of

LATEST + NEXT using the values of these variables broucht

to him by the reader,

8 + 13 = 21.

What does he do with this value?

The master computer now looks at the left-haod side

80
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of the arrow in his instruction.

f.---
`SUM -/

LATEST + NEXT
---

He sees that he must assign the computed value of

LATEST + NEXT, namely, 21, writes "21" on a slip of paper,

calls the assigner, and instructs him to assign this value

to the variable SUM.

The assigner goes to tt...7 memory, finds the window box

labeled SUM,

and dumps out

its contents.

Then he puts

the slip of

paper with

the new value

in the box, closes the lid and returns to the master

computer fir a new task.

Recapitulating, we see that assignment is the process

of giving a valuz to a variable. We say that assignment

is destructive because it destroys the former value of the

variable. Reading is nondestructive because the process

in no way a'ters the .values of ary of the variables in the

memory.
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We present in Figure 3-2 the entire flow chart of

Figure 2-1 in simplified flow chart language. The old and

the new flow charts are placed side by side for easy

comparison.

Initially take the next
latest term to be 0 and
the latest term to be I.

2

Find the sum of the latest
term and the next latest
term.

3

Now demote the latest term
to the role of next latest
term.

Now let the sum just cal-
culated be designated as
the latest term.

Write down
the ylue of
this sum

(a) Old

FIGURE 3-2.

82 9

NEXT 0

LATEST(-1

2

SUM f LATEST + NEXT

3

NEXT4 LATEST

LATEST k- SUM

STOP

(b) New
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The translation requires very little explanation. In

light of the foregoing explanation it should be obvious

that the statement in box 1 is equivalent to the two state-

ments in box 1 on the right. The new version of box 2 has

been discuss ,A in detail; box 3 is obvious.

We se.) that the two statements in boxes 4 and 5 of the

old flow chart are compressed into one box, box 4 of the

new flow chart. This is permissible whenever we have a

number of assignment statements with no other steps in

between. However, it is very important to understand that

these assignment statements must be executed in order from

top to bottom and not in the opposite order and not simul-

taneously. In fact, we should always think of a computer

as doing just one thing at a time and the order in which

things are done is generally extremely important.

You can see that the statements in box 4 involve no

-,,utation, but merely involve changing the values in

,n window boxes. This sort of activity will occur

very frequently in future flow charts.

in box 6 of the flow chart, we see written only the

variable SUM. The shape of the box (called an output box)

tells us that the vale of the variable SUM is to be

written down. If in some other algorithm we wished to

83
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write down the values of several variables, we would list

these variables in an output box separated by commas, for

example:

A, B, C, DISI

Tracing the ow Chart. To better understand what our

flow chart in Figure 3 -2(b) is doing, let us trace through

it executing the steps as the raster computer and his

assistants would do them.

Tracing of the Flow Cnart of Figure 3-2(b)

Flow
Step Chart Values of Variables Test True

Number Box or

Number NEXT LATEST SUM False

1 1 0. 1

2 2 1

3 3 1 > 1000 F

4 4 1 1

5 2 2

6 3 2 > 1000 F

7 4 1 2

8 2 3

9 3 3 > 1000 F
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Step
Number

10

Flow
Chart
Box

i;umber

4

Values

NEXT

2

of Variables

LATEST SUM

3

Test True
or

False

11 2 5

12 3 5 > 1000 F

13 4 3

14 2 8

15 8 > 1000

16 4 8

17 2 13

18 3 13 ' 1000 F

19 4 13

20 2 21

21 3 21 > 1000 F

22 4 13 21

23 2 34

24 3 34 > 1000 F

25 4 21 34

26 2 55

27 3 55 > 1000 F

28 4 34 55

29 2 89

30 3 89 > 1000 F

31 4 55 89

32 2 144

85
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Step
Number

Flow
Chart
Box

Number

Values of Variables

NEXT LATEST SUM

Test True
or

False

33 3 144 > 1000

34 4 89 144

35 2 233

36 3 233 > 1000

37 4 144 233

38 2 377

39 3 377 > 1000

40 4 233 377

41 2 610

42 3 610 > 1000 F

43 4 377 610

44 2 987

45 3 987 > 1000

46 4 610 987

47 2 1597

48 3 1597 > 1000

49 6 1597

In this trace, for ease of reading, the values of the

variables are reproduced only when assignments are made to

them. In between such steps, the values of the variables

do not change and hence have the last previously recorded

values. For example, in step 33 where we are working a

86
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test, the values of the variables are

NEXT = 55, LATEST = 89, SUM = 144.

In step 34, the values are

NEXT = 89, LATEST = 144, SUM = 144.

You can see that on step 48 in the execution of our

algorithm, we finally leave box 3 by the true exit and pass

on to box 6 where we output the answer, 1597, and stop.

The infantile simplicity of our conceptual model avoids

and conceals certain pitfalls. There is a danger of

thinking of assignment as being equality or substitution

which it is not. (We'll have more to say about this later

on.) This anti other sources of confusion (such as the

effect of a ceii-ain sequence of flow chart statements) can

be cleared up by thinking in terms of our model which will

always give the right answers.

In fact, the best way to get the ideas into your mind

would be to make some window boxes and, with two other

students, take the roles of master computer, assigner, and

reader and work through a couple of algorithms as described

in this section.

98
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PROBLEMS

What would be the effect of changing the order of

the two assignment statements in

box 4 of Figure 3-2(h) so as to

LATEST E-SUM]

NEXTk-LATEST

appear as seen at the right. Trace through the flow

chart with this modification until you find the answer.

2. (a) To compare the effects of the assignment statements

A -4- B and B -4- A

find the missing numbers in the table below.

Values before
Execution of
Assignment

Assignment
to be

Executed

Values After
Execution of
Assignment

A B A B

7 13 A ÷ B ? ?

7 13 B ÷ A ? ?

(b) In which of the two cases is it true that A = B

after assignment?

(c) Are the effects of the two assignment statements

the same or different?

88 .9
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4. Input,.

Imagine that you are a bookkeeper in a large factory.

You have records of the hourly rate of pay and the number of

hours worked for each employee, and you have to calculate the

week's wages. Of course, this can be done by hand; but assume

there are nearly a thousand workers in the plant so that the

job will be quite tedious. Naturally you prefer to have the

computer do this task for you. That being the case, you will

have to devise a flow chart to give the instructions to the

computer.

How will you .get th,2 hourly rates and the lours worked

into the flow chart? Will you write them all in separately?

If so, it will take a long time. The characteristic situa-

tion is that we have a stack of punch cards, one for each

worker. According to a certain code of hole-patterns, each

card is punched with the name of the worker, his hourly rate

of pay, the number of hours worked, and perhaps some other

things as well. Here is a sample of what such a card might

look like

AARONSON A A 2.98 37.50

II
I

I I I I

I

1

1

1 1

I

i 1

I I
1

III II

89
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Now we will introduce a new shape of frame--the input

box--into o.r flow chart language. The input box has this

shape

to suggest a punch card. Inside the box will appear a single

variable or a list of variables separated by commas.

RATE, TIME

When the above box is seen in a flow chart, it is inter-

preted as an instruction to the master computer to do these

three things:

i) read two numbers from the top card in a stack

of punch cards;

ii) assign these numbers respectively to the

variables RATE and TIME; and

iii) remove this card from the stack.

We see that an input box is command to make assignments,

but this command is essentially different from that in an

assignment box. In an assignment box, the values to he

assigned are to be found in the computer's memory or are

computed from values already in the computer's memory,

whereas, with an input box the values t.o be assigned are

obtained from outside the memory. No calculation may be

called for in an input box.

N107
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In a real computer (not our conceptual one), the dis-

tinction between these two kinds of assignment shows up

very sharply. The assignments called for in an input box

usually involve some mechanical motion such as removing a

card from a stack, while assignments called for in an

assignment box are made by electronic pulses which move at

nearly the speed of light, and hence much faster than input

assignments.

Now, let's see how the input box is used in our hourly

_rate and payroll problem. Should we input the data from all

the cards before we start our calculations? If so, we would

need a tremendous number of window boxes in which to store

----a I-1 t-h-i s data. Fnstead, we will calculate_the_wages after each

card is read. A description of our process is:

1. Read the RATE and TIME from

the top card in the stack

and remove the card.

2. Multiply the RATE by the

TIME to get the WAGE.

3. Output the values of RATE,

TIME, and WAGE.

4. Return to step 1.

This is realized in the flow

chart of Figure 4-1. Each step in

the above list appears in a simi- Fig. 4 -I

larly numbered box in our flow-chart except the 4th step.

H91
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That is represented by the arrow returning from box 3 to box 1.

You may wonder that the flow chart does not have a stop

button. We assume as one of the functions of the input box,

the duty of stopping the computation if the reading of another

card is called for when the stack is empty.

1 o
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PROBLEMS

I. Modify the flow chart of Figure 4-1 to provide for an

overtime feature. All hours in excess of 40 are to be

paid at time and a half. You will have to place a test

somewhere in the flow chart to determine whether the

worker actually put in any overtime. The formula by

which his wages are computed will depend on the outcome

of this test.
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5. Computer Memory

Now W3 are ready to look at how our conceptual model

of a computer can be realized in an actual machine. In

this section and the next, we will discuss a prototype ma-

chine which we wil! call SAMOS. SAMOS 15 a prototype ma-

chine stripped down to the bare essentials. Some features

of Its operation are described in considerable detail while

others are glossed over. The programming of SAMOS is

described briefly in Section 6.

In order to study this bock, it is only necessary that

you should have a general idea of how a computer works. So

we suggest that you read over the material in these two

sections quite rapidly without attempting to master it.

Just retain what sticks in your mind.

Cores

We will start with the memory.

How are all those window boxes

realized in actual practice? The

memory of SAMOS is a rectangular

94
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box. Inside the box, there is an arrangement of tiny mag-

netic doughnuts about 21 of an inch in diameter. These

doughnuts are called cores.

Our box is divided in 61 horizontal layers or trays

called core planes.

On each of these layers wires are strung in two direc-

tions like the lines on a sheet of graph paper.

MIIMMEMMOMMEMMEMMOIMMEMOMOMMME
MMUMMEMMMMOMIIMMOMMEMOMMOMMEM
MMINEMMOMMEMMUMMINIMMOMMEMMEM
MMIMOMMUMMEMMEMOMMEMOMMOMMOIM1WAM MEM EMMMOU EMMUOMM M MIIMOM MAMEMO MM
MMUMMOOMMEMOUMMMUMEMMEMMEMEM
MIIMMEMMUMMEMMEMMEMEMPMEMEMEM

it
MII UMEMMEMWROMMMMIMII MMEMEMEMMINI
III M II IIM EMO W MM

There are a hundred wires in each direction. At each point

where two wires cross, the wires are threaded through a

core like the thread passing through the eye of a needle.

95 1 (1 tj
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Since there are 100 x 100 crossings in each layer, we see

that there are 10,000 cores in each core plane and hence

61 x 10,000 = 610,000 cores in the entire box.

These cores are capable of being magnetized in either

the clockwise or the counter-clockwise sense.

Because of this, the core can store information. We

could think of clockwise magnetization as meaning "yes" and

counter-clockwise as meaning "no". We will instead think

of clocLwise as standing for "0" and counter- clockwise for

"1". In any event, the information contained in the direc-

tion of magnetization of a core is the smallest unit of

information and is called a bit of information. We see

that one core can store one binary digit 0 or 1, but a

96
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collection of cores can store a very large number. This we

will discuss a little later on, after a digression to see

how the cores get their magnetism.

First you must know that a pulse of electric current

moving along a wire generates a magnetic field running

around the wire, as depicted below.

s s S

This field can be detected by a pocket compass. The

strength of the magnetic field is strongest near the wire

and dies away as we move further from the wire.

If the direction of the current is reversed, the

direction of the magnetic field is also reversed.

< :) SC) (7) SC)

Thus, when a pulse of current passes through a core,

the core will become magnetized in one direction or the

other, dependin on the direction of the current.

91 1 OH
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S S

But how can we manage to magnetize just one core in-

stead of the whole string of cores though which the

pulse passes? The answer lies in the magnetic properties

of the material of which the core is made. With this mate-

rial, if the pulse is too weak, then the direction of the

magnetization of the core is not permanently altered.

After the pulse of current has passed by, the core merely

returns to its former magnetic condition, whatever that was.

On the other hand, if the current is strong enough,

the core remains permanently magnetized in the sense estab-

lished by the direction of the current, regardless of the

former magnetic condition of the core. The situation is

analagous to trying to throw a ball from the ground to the

flat roof of a building. If you have enough power in your

throw, the ball will land on the roof; otherwise it will

bounce against the wall and fall back to the ground.

1 ()9
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Now the strength of the pulses is carefully regulated

so that one pulse is not sufficient to permanently magne-

tize a core but two pulses acting simultaneously will exceed

the threshold strength and result in permanent magnetism.

Thus, pulses passing along both wires shown below will

permanently magnetize just the one core which is located

where the wires cross.

The Store

617Now let's leave the
40

individual core planes and
P_Ye-e

.0.0-0
consider the entire memory

or store of the computer

composed of the 61 core

planes. Each vertical

column of 61 cores consti-

tutes a computer word. Thus, the memory of the computer is

composed of 10,000 words. These words have addresses (like

house numbers) which are 4-digit numbers from 0000 to 9999

by means of which we may refer to them. Each of the 10,000

dots on the top of the box is the top of a vertical column

of 61 cores (or a word). The manner of assigning the

addresses is indicated in the figure.
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Each of these words

eliial
corresponds to a window

box in our conceptual

model. Each variable in

the flow chart will have

a certain address. The

word with that address will have in it a certain pattern of

"bits" (direc+ions of magnetization of its cores) repre-

senting tha value of that variable. "Assigning a value to

a variable" is effected by putting a certain pattern of

bits into a word.

11111111111111111

9,97
':1:9

In more detail, when we said "the master computer tells

the assigner to assign the value 1597 to the variable SUM",

what actually takes place is this: The variable SUM is

represented inside the machine by means of its address;

suppose it is 0103. Now all the 61 x 2 = 122 wires passing

through cores in the word

addressed 0103 are ener-

gized with pulses of
ADDRESS

current in the proper
0103

direction so as to

achieve the pattern of

bits representing the

number 1597.
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In a modern computer, this assignment process can be

performed in 3/10 of a microsecond; that is, 3/10,000,000

of a second.

Characters

One obvious way of ,9,presenting the number 1597 would

be in the binary system as

1 1 0 0 0 1 1 1 1 0 1

preceded by a string of zeros to bring the total number of

binary digits up to 61. But that isn't the way we'll do

it. We want the words to operate on the decimal system

rather thb -inary, and we would like to be able to store

letters as well as digits.

For this reason, we sub-

divide our 61 bit words

11 Ulf! [11 1j
I SIT 66ITS 6 PITS 6 6

0 SITS 6 SITS 6 SITS

into 11 characters as shown at right.

The first character is reserved for holding a sign,

+ or -. Here 0 stands for + and 1 for -. Each of the

other characters consists of 6 bits. These characters can

be used to store numbers or letters, according to the

following code.
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Char. Code Char. Code Car. Code Char. Code
0 00 0000
1 00 0001 A 01 0001 J

2 00 0010 B 01 0010 K

3 00 0011 C 01 0011 L

4 00 0100 D 01 0100 M
5 00 0101 E 01 0101 N

6 00 0110 F 01 0110 0

7 00 0111 G 01 0111 P

8 00 1000 H 01 1000 Q

9 00 1001 I 01 1O0M R

10 0001
10 0010
10 0011
10 0100
10 0101
10 0110
10 0111
10 1000
10 1001

S 11 0010
T 11 0011
U 11 0100
V 11 0101
W 11 0110
X 11 0111
Y 11 1000
Z 11 1001

We have used up only 36 of the 64 combinations available

with a 6 bit code. This leaves 28 addition-
715---=r- .t.-al combinations for other special symbols I

0

O B
0

o 0 0
such as +, >, etc. We introduce one of these 1

o
o o

right now, namely the blank space, , which

is coded as

1 1 0 0 0 0.

With this code, you can see that the 61

bit computer words displayed vertically at

the right turn out to be

and

+IBIUIYI 6 "EGG S

I I0I0I3I9I7I5I0Il 1218 I

From now on we will represent our com-

puter words as strings of 11 characters

instead of strings of 61 bits.

102

0

0
0

U

0
0
9_

0
0
0
0

Y

0

0
0
0

0

0
0
0

0

0

G

0

0

0
0

0

S

0
0
0
0
0
0

0

a
0
0
0

0
0

0
0

3

9

a

0
0
0
0
0

0
0
0 z

0
0
0

8

8
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6. Arithmetic and Control Units of SAMOS

Now that we have seen how SAMOS's memory is structured

we will consider how the memory is used in executing an

algorithm.

Our computer has several other components besides the

memory. These are

shown in the block

diagram in Fi-

gure 6-1.

The solid

lines indicate the

directions in which

values may be transferred. The dashed lines indicate the

transferral of instructions or the exercise of control.

CONTROL UNIT 71

V

INPUT
(card or

tape reader)

FIGURE G

OUTPUT

(typewriter or
line printer )

The control unit and the arithmetic unit perform the

duties of the "master computer".

An important part of the arithmetic unit is the

accumulator. This is a special computer word in which all

1131



www.manaraa.com

arithmetic operations are performed. Furthermore, a simple

assignment like

LATEST f SUM

is carried out by first copying the value of SUM into the

accumulator and then copying the value in the accumulator

into the computer word belonging to 'he variable LATEST.

The value of SUM is unchanged in this process. Note that

values to be input or output do not pass through the

accumulator but go directly in and out of memory.

Where does the control unit get such instructions as

referred to in the last paragraph? These are aso stored in

the computer's memory. We will learn something about that

presently.
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7. Machine Language

Getting an algorithm into a form in which a machine can

execute It involves several translations which may be depicted

as follows:

IENGLISH °I FLOW CHARTp
LANGUAGE

PROCEDURAL
LANGUAGE 11'

MACHINE
LANGUAGE

(ou have already had a little experience with the first trans-

lation step. The second translation step is the process of

translating a flow chart into a procedural language such as

FORTRAN, ALGOL, MAD, or PL/I. Suffice it to say that this

step is quite mechanical and can be performed by a person

who has no idea what the algorithm is all about. The third

translation process is completely mechanical and is done by

the computer itself. This process is called compiling.

We don't need to know how compiling is done, but we do

need to know the reason for doing it. Each make and style

of computer has its own language--that is, its own set of

instructions which it can understand. To avoid this tower of

Babel in which a programmer would have to learn a new language

for each machine with which he wished to communicate, the

procedural languages were developed. These procedural languages

constitute a kind of "Esperanto" which enables a programmer

to communicate with many different machines in the same language.

:106 .1. 0
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The programmer merely prepares, say, a FORTRAN program on

punched cards, feeds it into the computer which "compiles"

a machine language program which is placed in the computer's

memory.

In our SAMOS computer, these instructions will be placed

in order in consecutively-addressed locations in memory start-

ing with 0000. After the computer has executed an instruction,

it will always look for the next instruction in the next

address, except when there is a branching instruction telling

it to go to a different address for the next instruction.

To see how this works, consider the following instruction

seen in the Fibonacci sequeoce flow chart.

SUMS- NEXT -F. LATEST 1

FIGURE 7-1
In FORTRAN, this instruction would appear as:

and in ALGOL:

SUM = NEXT + LATEST;

SUM: = NEXT + LATEST

In the SAMOS language, these variables cannot be referred to

bye name but only by the addresses in memory associated with

the variables. Suppose that NEXT, LATEST, and SUM have been

given, respectively, the locations 0100, 0101, and 0102.

Then in the SAMOS language, the above instruction would take

the form or a sequence of three instructions:
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L D A 0 0 0

A D D 0 0 0

S T 0 0 0 0

0 1 0 0

0 1 0 1

0 1 0 2

Figure 7-2. SAMOS instructions for Figure 7-1

These instructions have the form of 11 character words,

but the first character is not used here and neither are the

5tn, 6th, and 7th. The letters at the left of the instructions

indicated the operation being performed, and the four-digit

numerals at the right are addresses.

The letters LDA stand for "LoaD the Accumulator". The

whole instruction means: "Copy the contents of the memory

word addressed 0100 into the accumulator without altering

the contents of address 0100." Clearly this is the function

of the reader in our conceptual model. We will not go into

the details of the electronics involved in carrying out this

instruction. It is sufficient to know that when this pattern

of bits in the instruction

OILDAIO 0 010 1 0 0

is brought to the control unit, certain switches are thrown

which allow a pulse of current to pass through the cores of

the word 0100. The magnetized cores effect an alteration of

the current which in turn permits a copy to be made.

The second instruction in Figure 7-2 means: "ADD the

value in the word addressed 0101 to the-value already in the

111
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accumulator and place the result in the accumulator." The

third instruction means: "Copy (or STOre) the number in the

accumulator into the word addressed 0102." Times vary from

machine to machine, but in modern computers, the time required

for carrying out such instructions will usually be less than

1 of one second.
1,000,000

A Complete SAMOS Program. We are about ready to see how

the entire flow chart for the

Fibonacci sequence algorithm (re-

1
peated at the left) will emerge in

SAMOS language. First, however, we

2
must remark that in the SAMOS language

we can never refer to a number directl

but only to a memory address in

which this number may be found. This

even applies to constants. Thus,

part of the compiling process will

involve providing memory addresses

for the constants (as well as the

variables) appearing in the program.

We assume that the addresses 0103,

0104, and 0105 have been set aside

for the constants 0, 1, and 1000

appearing in the flow chart and that the proper values have

already been put in the words with these addresses. The

NE XT 0

LATESTE

SUM LATEST+ NEXT I

FIGURE 7- 3

.r...
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memory locations 0100, 0101, 0102 have been allocated for

the variables NEXT, LATEST, SUM, but no values have been

placed in these words. The state of the memory at the

beginning of the execution of the SAMOS program for the

Fibonacci algorithm is at the bottom of Figure 7-4. Opera-

tions not previously met will be explained in the discussion

following this program.
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MEMORY
LOCATION
(Address)

-
1

OPERATION

2 3 4

i

5 6 7

ADDRESS

8 9 10 11

FLOW CHART
EQUIVALENT

Character number

0 0 0 0 D 0 1 0

NEXT-a.-0

0 0 1 T 0 0 1 0

0 0 2 L D A 0 1 0

LATEST-4-1

0 0 3 S T 0 0 1 0

0 0 4 L D A 0 1 0

0 0 5 A D 0 1 0 SUM LATEST + NEXT]

T
0 0 6 S T 0 0 1 0

0 0 7 L D A 0 1 0 5 SUM >1000

0 0 8 S U B 0 1 0

0 0 9 B M I 0 0 1

0 1 0 D 0 1 0
NEXT -i LATEST

0 1 1 T 0 0 1 0

0 1 2 L D A 0 1 0

LATEST--SUM
0 1 3 S T 0 0 1 0

0 1 4 B R U 0 0 0 4 Arrow from flow chart
box 4 to box 2

0 0 1 5 W W D 0 1 0 2I pi
0 1 6 H L STOP

4-1----"-------_
The variable NEXT0 1 0 0

0 1 0 1
The variable LATEST

0 1 0 2 The variable SUM

0 1 0 3 + 0 0 0 0 0 0 0 0 0 0 The constant 0

0 1 0 4 + 0 0 0 0 0 0 0 0 0 1 The constant 1

0 1 0 5 + 0 0 0 0 0 .0 1 0 0 0 The constant 1000

Figure 7-4. SAMOS Program for Fibonacci sequence algorithm

111
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Discussion. The instructions in memory addresses 0004,

0005, and 0006 have already been discussed. Before looking

at the other instructions, look first at memory locations 0100

through 0105 to see where your variables and constants are

located.

From previous discussions, you see that the instruction

in 0000 copies the value in 0103 (that is, the number 0) into

the accumulator. Next, the instruction in 0001 copies the

value in the accumulator into the word with address 0100.

Together these steps are equivalent to assigning 0 to the

variable NEXT. Similarly, the instructions in addresses 000'._

and 0003 are equivalent to assigning the value 1 to the va,

able LATEST.

Remember that the control unit executes the instructions

in order until it comes to a branching instruction. The

first of these branching instructions is found in address

0009, reading

1131ml'
I 1 1 10101115

The code BM1 stands for "Branch on Minus". The whole in-

struction means, "If the number in the accumulator is nega-

tive, go to address 0015 for the next instruction, otherwise

go on as usual to the next numbered address (0010)." We will

see shortly that the number in the accumulator at this time

(
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is just

1000 - SUM

so that the number in the accumulator will be negative only

in the case that

SUM > 1000.

In this case, the branching instruction sends us to address

0015 where we see the intruction

1+101 I 1 10111012

which means, "Write the WorD in address 0102" which amounts

to printing out the value of SUM.

Now why is it that when the instruction in address 000

is reached, the number in the accumulator is 1000 - SUM?

Well, on looking at the instruction in address 0007, one

sees that it instructs us to load the accumulator with the

contents of 0105; that is, to put the number 1000 in the

accumulator. The next instruction, that in 0008, tells us

to "subtract the contents of 0102 from the accumulator and

put the result in the accumulator." Since the contents of

0102 is just the value of SUM, this amounts to the placing



www.manaraa.com

in the accumulator.

You should be able to verify for yourself that the

instructions in addresses 0010 through 0013 accomplish the

assignments indicated in the righthand column.

The instructions in memory address 0014 needs to be

described.

13

R
U 4

BRU stands for "BRanch Unconditionally". The meaning of the

entire instruction is "Go back to memory address 0004 for

the next instruction and continue in order from there." You

can see this corresponds to the arrow from flow chart box 4

leading back to flow chart box 2 where we again repeat the

assignment

SUM -4- LATEST + NEXT

The instruction in 0016, of course, stands for HaLT and

amounts to stopping the computing process.

You can best understand all this by tracing through the

SAMOS program by hand, keeping a record of:

i) which instruction is being executed;

ii) the value in the accumulator;

iii) the values in the memory locations 0100, 0101, and

r 113



www.manaraa.com

0102 (the values of NEXT, LATEST, and SUM).

Note that the contents of the instructions in addresses

0000 - 0016 are never altered, nor are the contents of the

locations 0103 - 0105 (the constants 0, 1, and 1000).
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PROBLEMS

Construct a list of SAMOS instructions for the flow

chart of Figure 4-1. You will need two additional

instructions. The first is

OPERATION ADDRESS

1 2 3 4 5 6 7 8 9 10 II

D 0 0 5

which is an instruction to read a number from a card

into the computer word addressed 1005.

The second is
M P Y 1 0 2 3

which is an instruction to multiply the number in the

accumulator by the number in address 1023 and put the

result in the accumulator. (Of course, in the address

part of these instructions we may put any address we

wish.)
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8. Odds and Ends

Only a few of the ideas we have learned about SAMOS

need to be remembered.

Among the things to be remembered is the sequential

nature in which the computer works, that is, the one-by-one

steps in which the computer performs its tasks. The order

in which the tasks are performed is just as important as

what it does.

Another property of computers that we must understand

is the finite word length. We have seen that SAMOS words

consist of 10 characters and a sign so that the largest

number representable in this coding system is

+ 9,999,999,999

a rather large number but still finite.

You should be aware that there are other ways of

coding numbers which allow us to work with numbers other

than integers. One of the most common of these is floating

point form which is similar to the so-called "scientific

116
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notation".

To see how this works, recall that any decimal numeral

such as -382.519 can be expressed as

- .382519 x 10
3

in which (right after the sign, if any) there is a decimal

point followed by a non-zero digit multiplied by a suitable

power of 10. We can code numbers in this way in SAMOS by

reserving three characters for the exponent, thus Faving

Some examples of how numbers are coded in this system

are shown in the table which follows:

NUMBER FLOATING POINT FORM SAMOS CODING

3.1415926 .31415926 x 10
1 + +01 3141592

-273.14 -.27314 x 10
3 +03 2731400

.0008761 .8761 x 10
-3

+ -03 8761000

.73 .73 x 10
0

+ +00 7300000

4 .4 x 10
1

+ +01 4000000

1/3 .333333333 x 10
0

+ +00 3333333

11/7 .157142857 x 10 1

+ +01 1571428
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By glancing at the table, we see that the eight-digit

representation of it in the top of the left-hand column has

to be chopped down to 7 digits of precision due to space

requirements. The same holds true for 1/3 and 11/7 at the

bottom of the table. Thus, we see that in a computer even

such a simple fraction as 1/3 cannot be represented exact-

ly, but only to a close approximation. This characteristic

of "finite word length" presents important problems in com-

puter work, which will be discussed in various places in

the main text.

In this coding system, we can represent large numbers

but we pay a price in giving up three places of precision.

The largest floating point number representable is

r+1+19_9191919191919[91

which represents the number

999,999,900,000,000,000,000,000,000

000,000,000,000,000,000,000,000,000

000,000,000,000,000,000,000,000,000

000,000,000,000,000,000.

Similarly, there is a smallest positive number which can be

represented, namely,

ETIF§T9-1110 0 0 0 o
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or

0.000 000 000 000 000 000 000 000 000

000 000 000 000 000 000 000 000 000

000 000 000 Q00 000 000 000 000 000

000 000 0.00 001

which is very small indeed.

In practice, most machines impose other rostrictions

which further limit the largeness and the smallness of the

numbers which can be represented.
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9. Iteration Boxes

Typical of the sort of thing we will have to do quite

frequently in this course is adding up the reciprocals of

the integers from I to 1000, indicated by the probably familiar

"sigma" notation
1000

n=1

If you try to evaluate this sum by hand computation, you

will soon find out why this problem had best be done on a

computer.

For this algorithm, we need fwo

variables, a variable n which :-,ucce-

sively takes on the value'.; 1, 2, .

1000, and a variable kceps

5

nem-1
4

5UM <--SUM+Yn

FIGURE 9 -I

a running total uf the 'j' () the reciprocals of the values

of n The rudimentry iThH i illutrated in Figure 9 -I.

Of course we nocA a t ting device in order to branch

out of this loop when n o/c_eds 1000 as well as a means of

assigning n its initial value I. These additions are seen

in Figure 9-2. The finishinn touches to make this flow chart

ial
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operational are: starting the

variable SUM with a clean slate

(SUM 4- 0); and outputting the

final vaue of SUM. The complete

flow chart is seen in Figure 9-3.

FIGURE 9 -3

1 113

3

l000)-F-).

T

sum <---sum+Yn

1

FIGURE 9 -2.

4

We see that the variable

n acts as a sort of

counter "controlling"

the loop in this flow

chart. This variable n:

i) starts with the

value I (Flow

chart box 2);

ii) and goes click,

click, click in steps

of I (box 5);

Iii) through the value

1000 (box 3);

iv) executing the

loop computation

(box 4) at each

step.
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Loops controlled in this way by counters are of such

frequent occurrence that we find it convenient to introduce a

new kind of flow chart box to

assume all these functions of

the counter, initialization,

testing, incrementation seen in

Boxes 2, 3, and 5 of Figure 9-3.

This three compartment flow chart

box illustrated in Figure 9-5

is called an iteration box.

initialization

ir,cremen+a+ton

FIGURE, 9 -4
It is readi ly seen to be

obtained by compressing to-

testing
gether boxes 2, 3, and 5 of

n E- i -----
4OOOnf r1-1-1 --.)-n5-

F Figure 9-3. The flow chart

FIGURE 9 -5

These iteration boxes are

often very helpful in organizing

our thinking in constructilg

flow charts. They are useful

in many other contexts besides

summation formulas, notwith-

standing the fact that summation

of Figure 9-3 with this

modification is seen in

Figure 96-;

122 Lj.)

2
n

r*-n+1 n 1000

4
_I SU NI SUM -I-. ii/r)

6

LSUM

FIGURE 9 -6
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formulas will be among our best customers for iteration boxes.

The initial value of the variable n, the size of the step,

and the relation in Box 2 may be chosen at will. Thus in

Figure 9-7 we see a flow chart for calculating the product of

the odd integers between 5 and 30.

K
K' 30

PROD (-PROD XK I

FIGURE 9 -7

123 /

As a sample of use of

iteration boxes, study the flow

chart of Figure 9-8 which prints

out every three digit number

which is equal to the square of

six more than the sum of its

digits.

H <-- 1

H (H +1
H 9

f T

rk-c)
T<-T +1

T...4. 9

U <-0
U <U1-1

T

U 9

1

4
N < 100 X H- F10XT+Ul

4,
5

= 6 )

T 6

FIGURE 9 -8
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PROBLEMS

I. Using iteration boxes, write a flow chart and a computer

program and run it for computing the exact values of

n! for n = I, 2, 3, ..., 9.

2. Write and run a computer program for computing approximate

values of n! for all integer values of n from I to 100.

12

3. (a) Draw a flow chart for calculating 2:I
n=1

(b) Trace this flow chart by hand to find the value of

the sum in (a)
5

(c) Repeat (a) and (b) for the sum k3

k=1

n

4. (a) Draw a flow chart which will output n, I: k3 , and

n 2 k=1

2: k for each value of n from 1 to 50.
(1

(b) Write the program for part (a) and run it. Study

your output and make a conjecture. Can you prove it?

5. In Figure 9-8, which flow chart boxes comprise

(a) the loop controlled by box 3? box 2? box I?

(b) During the course of the algorithm, how many times

do we enter box I from the top? box 2? box 3?

(c) How many times will the test in box 5 be executed?

124
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Chapter 2

SEQUENCES

I. Sequences of Approximations

There are many occasions in mathematics when we need

to work with numbers which we cannot calculate exactly. When

this happens, we must be content with approximations. You

have experienced this fact in connection with finding square

roots and finding areas of regions with curved boundaries.

A rather crude method for approximating, say, the

square root of 2 would be t' construct a square of side

length I
and then measure the length of the diagonal. If

the figure is carefully drawn, an

approximation LJn be obtained but

only accurate to a few decimal places.

FIGURE I-I

For a crude approximation of the area of a circle of

radius I, we could inscribe such a circle in a cardboard

square. First weigh the square and then cut out the cir-

cular disc and weigh it. The area of the circle, Tr, is then

calculated by

125
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weight of circle
4 weight of square

Again, even with the most careful construction and the best

scales, we could hardly expect a result accurate to more than

three decimal places.

These methods of approximation,

with their limited accuracy, are of no

theoretical importance in mathematics.

Mathematicians often require methods
FIGURE 1-2

of approximation of unlimited accuracy. To this end, we

look for a sequence or list of approximations with better

and better accuracy, so that whatever accuracy may be demanded

can be achieved by going sufficiently far down in our list.

As an example, we will show how to construct such sequences

for finding square roots.

You may have learned in your school days the "divide

and average algorithm" for approximating square roots. This

is a method for finding a sequence of approximations for

square roots. It works like this:

To find the square root of a positive number a, we choose

our first approximation to be any number we please, g so

long as it is positive. A number h is computed by dividing

126
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a by g1,
1

a

1

The next approximation, g , to the square root of a is obtained
2

by averaging g and h
1 1

g

g + h

1 1

2 2

Now we iterate this process over and over, i.e.,

gn hn
g n+1 2

hn+i
a

g n+ 1

The sequence of g's generated in this way

g1 pg2 ,gpg4 ,

gets closer and closer to the square root of a. We can get

numbers as close as we like to the square root of a. Why

this is the case will be shown a little later on. For now,

let us see how easy it is to write a computer program for

127

8
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this algorithm. The flow chart for

this program is shown at right. This

flow chart is not complete because we

have not provided a stopping mechanism.

This will be done later.

The purpose of the variable, n,

is to number the lines of output. As

we see, subscripted variables are not

needed in the computer program. Instead,

we let the variables g and h take on

new values over and over again. We

also note that for our first approx-

imation (first value of g), we have

arbitrarily Selected the positive

number I.

h<--a/g
4

11,9

5

9 .(-(94.h) /z

FIGURE 1-3

Let's examine a few lines of output from this algorithm,

ignoring the finite word length and concomitant round-off

error obtained in computer calculations. We will make our

calculations exact. We will take the input value of a to

be 2. You should trace through the flow chart and verify

the values listed below:

1 9
128
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n g

1

2 3/2

3 17/12

4 577/408

5 665857/470832

The square of the last value of g listed above is

443365544449
221682772224

which exceeds 2 by 221,682,772,224
that is, by less than

'

I part in two hundred billion. Thus, g5 is a quite good

approximation of /. We could repeat the process as many

times as we like, getting more and more terms of the sequence

ever closer to If.

Let us see why this algorithm works. First note that

if two pairs of positive numbers (g , h ) and (g , h ) have
1 2 2

the same product, a, that is

g h = a = g h ,

1 1 2 2

129 1.4 ()
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then the two members of one pair must He between the two

members of the other pair.

9 9
21 2 hl

(If h is larger than either g 'or h , then g must, in

1 2 2 1

compensation, be smaller than either g or h in order for
2 2

the products g h and g h to be the same.)
1 1 2 2

As a special case, a must lie between the members of

any such pair. (Take g = h =
2 2

Since h
1 g

a g
1

= -- by definition, we see that h
1

= a, so
1

that g and h lie on either side of lg..
1 1

Now g =
2

of the interval joining g and h .

g1

g1 + h1

a h
1

2
by definition and is therefore the midpoint

9
2

9
1

h
1

The number h is then determined by h = so that g h = a
2

a

2 9
2

2 2

whence by preceding remarks h also lies between g and h
2 1 1

130 /4
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and on the opposite side of from g .

2

9i h2 gz hi

Furthermore, since g is the midpoint of the segment joining
2

g and h , we can see that the length of the segment joining
1 1

g and h is less than half that of the larger segment.
2 2

That is,

2
-g

2
I < 2Ih1 - g

1

I

Now the same process is repeated to find g and h .

3 3

That is,

and we have

g
3

g + h
2 2

raT

2
h = a

3
g3

21 h2 h3 9392 h1

1 h

3
g

3
1 < 7 lh

2
g

2
I < T lh g I

1 1

Now we see that the length of the interval joining gn

and h
n

is decreased by at least half each time n is increased

by I. Hence this interval "shrinks to a point" as n increases

1" 14
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without bound. This point to which it "shrinks" is /5-, the

only number contained in all these intervals. The inequalities

0 < ig n < 1g n hn I < 2n- 1g - h I

show that the difference between gn and /5 can be made as

small as we like by choosing n large enough.

In light of this, we say that the sequence

g ,g,g,g, ..
1 2 3 4

converges to /Y. Also, the sequence

h,h,h,h,.
1 2 3 4

converges to

The trace of the flow chart of Figure 1-3 suggests that

the terms of the sequence of g's converges to (or zeros in

on) /a7 much faster than by simply reducing the error by

half at each step. This can be explained by means of the

following calculation, where the first two equalities follow

from the definitions of gn+1 and hn and the remaining two

from algebraic simplification:
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a

g
n

+ + h 'n g
n

gn+i 2 2

n
n

2 - 2 + a
' (gn VT) 2

2gn 2gn

Thus, if gn is such that the "error" Ign /El is less than

1/100, then (gn T)2 is less than 1/10,000 so that the error

in the next approximation ign+1 WI will be 20,000g
, which

n

is less than 1/20,000 if gn is greater than I. And for the

following term,

(20,
2g

n+1
01000)2800,000,000

This shows that once the error starts getting small, it

diminishes very rapidly indeed.

We cannot leave the square root problem until we provide

a stopping mechanism for the algorithm given in Figure 1-3.

In order to provide for this, we will input a number, s,

which is our maximum tolerance of error. (The Greek letter

E ,.pronounced "epsilon," is traditionally used for this purpose.)

With each new computation of g and h, we will make the test

(19-111<e)

/F.

133
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When we get a true answer to this

test, we will know that g lies

within E of W since /W is

between g and h. Then we can

terminate the computing process

or go back for new values of a.

In theory, this value of E can

be as small as you like. In

practice, however, taking finite

word length and round-off error

in account, we must take

sufficiently large so that

the test will eventually be

satisfied, thus avoiding an end-

less loop. How small E may be

safely taken will depend on the

word length characteristics

of your machine and/or your

programming language as well as the

whose roots are being calculated.

some minimum accuracy El beyond

go, and we must take E > E1.
1

2a

3

N f I

g 4-

h f a/g

4

N, g, h

(Ig-h < E

N

g

h

f N+1
q+h
2

f a/q

1-4-FIGURE

size of the numbers a

In other words, there is

which we cannot hope to
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PROBLEMS

I. Write a program implementing the flow chart in Figure

1-4, and have the program approximate the square root

of each of the following numbers: I, 2, 20, .0002,1010.

Read a value of 10
6

for e.

2. Write a program to make a table of square roots. For

each number, the program should obtain a sequence of

approximations to the square root, but only the last

approximation should be printed in each case. Your

instructor will specify the size of your table.

135
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2. Approximating Solutions of Equations

As you know, many mathematical problems may be reduced

to the solving of equations. You know a formula for solving

quadratic equations. Similar, but much more complicated,

formulas exist for solving third and fourth degree equations.

But for higher degree equations, no similar formulas can be

found. For such equations and for equations of a nonilgebralc

type like

x
sin x =

2

we will generally have to be satisfied with approximate solu-

tions. Again we look for sequences of approximations by means

of which we can get as near as we like to the true solution.

The method we present here for finding s'ucn sequences

is very simple and at the same time one of the best for

computer use. We first write our equation in the form

f(x) = 0.

For example, the equations

8x3 = 6x + I and sin x =

would be expressed in the form

8x3 - 6x - I = 0 and

2

sin x -
2

= 0.

Then the problem becomes that of finding a zero of the

function f, that is a value of x for which f(x) = 0.
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Graphically, this is the point at which the graph of the

function, f, crosses (or touches) the X-axis.

Now if we have an interval

[L', R1] such that ;ho functional

values at the end i.oints, f(L1)

and f(1721), have opposite signs,

then the graph of the function

must cross the X-axis somewhere

between L1 and R1 (provided that

the graph of f is an unbroken

curve) .

FIGURE

We look at the midpoint M1 of the interval [L1, R1]

M1

L1 + R1

2

and consider three cases. Ri, RR))

Case I. If f(M1) = 0, then

M1 is a root.

Case II. If the sign of f(M1)

is opposite to that of f(L1),

then f will have a zero between

L1 and M1. In this case, we

let

L2 = L1 and R2 = Mi

and repeat the process, find-

ing M2, etc.

131

M1

pm))

148

FIGURE 2-2
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Case III. If the sign of f(M1) is the same as that of f(L1),

hence opposite to that of f(R1), then there is a zero between

M1 and R1. In this case, we let

L2 = M1 and R2 = R1

In this way (unless we actually find a zero), the

sequences

and

L1, L2, L3, L4, ...

R1, R2, R3, R4,

are constructed. A zero of the function is always located

between L
n

and R
n
and moreover the length

Rn - Ln

is reduced by half each time n is increased by 1. Thus,

each of the numbers L
n

and R
n

can be made to differ from

the zero by as little as we like. In other words, both of

the sequences

L1, L2, L3, ... and R1, R2, R3, ...

converge to the zero.

A flow chart for our algorithm is seen at the right

of the next page. Again we see that the computer has no

need of subscripted variables but instead prints out the

successive values of L and R. The variable N merely num-

bers the lines of output.

138

.149



www.manaraa.com

The flow chart in Figure

2-3 is not quite ready to be

converted into a computer pro-

gram because we have not.provi-

ded for a way to stop unless

we actually hit a root. Also,

because of round-off and finite

word length, we should modify

the test in box 7 to read

The final flow chart ready

for translation into a computer

program is shown in Figure 2-4.

As in the previous example, we

must have e > e . In most
1

applications of this algorithm,

one is interested only in the

(f(DX-F(R)<0
4r 3

N4-1

4

5

M ( L+R)/2

f ovn = o

12

"Mei-hod
inapplicable"

8

(-F(M)X-f(L) < 0

JET 9 '.F 10

M I L E.; Iset

+ 13
M "13
a zero"

4, 11

N

FIGURE 2-3
final value of M and not in the number of steps N or the

intermediate values of L and R. In this case, the boxes

NE-1 N E-N+1
and N,L,R can be eliminated.

It is assumed that the input values of L and R are such

that L < R. It is further assumed that f has opposite signs

at L and. R (i.e., that f(L)f(R)<O).

139
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It will be found that this

sequence will not converge nearly

as fast as the square root algo-

rithm. Faster converging methods

are possible for the problem at

hand, but to use them it is ne-

cessary that the function satisfy

extra conditions which in general

are hard to verify. However,

there are many important special

cases where the faster methods

are known to work and should be

used. Such methods will be

studied in a later chapter.

2

(Roxf(R)<0 y
ier 3

I NE- I I

>4

1
"Method
inapplicable

M E- (L-F-R)/2

m"is an
approxima
zero"

f(M)Xf(L)<0

10

140 151

Ir

NE-N +!

FIGURE 2-4



www.manaraa.com

PROBLEMS

I. Draw a flow chart for a program which is to search for

zeros of a function f in the following manner:

(a) Read values for: A left end-point of an interval

B right end-point of an interval

error tolerance

N a positive integer

(b) For each integer K between 1 and N, apply the algo-

rithm of this section to the sub-interval [L,R] of

[A, B], where

L = A + (K-1)
BA and R = A + K

BA

2. Write the program described in Problem 1, and run it with

the following functions f and numbers A, B, E, and N:

(a) f(x) = x3 - 2x2 + x + 5

A = -10, B = 10, e = .01, N = 40

(b) f(x) = x3 - 2x2 + x + 5

A = -10, B = 10, e = .01, N = 2

(C) f(x) = x4 - x2

A = -5, B = 5, e = .01, N = 20

3. Use the program written in Problem 2 to approximate

(a) the positive root of x2 - 2 = 0

(b) the positive root of x2 - 30 = 0

(c) the negative root of x5 + x + I = 0

In each case, let N=1 and choose appropriate values of

A and B.
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3. Problem Solution Using Sequences

Sequences also arise in other ways than in approximating

numbers. We give here an illustration.

Example: A boy has a super-ball which when dropped will

7
bounce back to T of its original height. If the ball is

dropped from a Leight of 5 feet and allowed to continue to

bounce, what will be the total up and down distance it travels?

Solution: It is clear that the total up and down distance

is 5 feet less than twice the total distance the ball travels

downward. If we let do represent the total distance the ball

falls before reaching the ground for the n
th time, we have,

ignoring the diameter of the ball,

d = 5

d = 5 + 5G)
2

d
3

= 5 + 5(g) + 5(8)2

d 4 5 5(28-) 5()2+ 5()3

7
7 7

do
5 + 5( ) + 5(8/2+ 5

Ti

3
+ + 5(8) n-1

We have thus constructed a sequence. We will show that this

sequence converges to a certain number which we will take as
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total distance the ball falls in infinitely many bounces.

There may be some question as to whether the ball actually

bounces infinitely many times. In the mathematical model

of the problems we have selected, it is convenient to adopt

the attitude that it does bounce infinitely many times.

This gives answers close to actual experience. (The total

distance the ball travels after the 100
th bounce is negligible

for all practical purposes.)

In order to find the number to which our sequence con-

verges, we express the term dn in a different way. We

illustrate this with d
6

7 7 7

d
6

= 5 + 5(8Z) + 5(8")
2

+ 5(')
3

+ 5()
4

+ 5( E7)5
ET T3 --3-

7 2

+ 5(
3

4

+ 57)5 + 55(id Z) +
id

) + 6 T3-

8
c1

6

Subtracting,

Thus,

Similarly,

d
6 8/= 5 + 0 + 0 + 0 + 0 + 0 - 5 (2-)

8

d
6

= 8 [5 5(26)6]

dn 8[5 - 5(1)n]
8

Now we can see what happens to dn as n gets large; the value
n

n

of (i) gets closer and closer to zero so that the term 5(8)
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becomes Insignificant. Thus, we see that the sequence

dl, d
2

, d3, . . . converges to the value of 40. The total

up-and-down distance traveled by the ball will be

2(40) - 5 = 75 feet.

(In this problem of the bouncing ball, we see an example

of "mathematical modeling". Mathematics is not equipped to

talk about nature directly; there is always a modeling process

involved. In this case, we think of the position of the ball

as being a point on a vertical line. You may if you wish

think of this as the center of the ball. In this simplistic

model, we ignore the difference in air resistance at different

speeds, the deformation of the ball on hitting the ground,

etc. Furthermore, we take a rule for the height of return cf

the ball observed in a certain range of heights and extend it

to very small heights for which we are unable to make measure-

ments. It is a moot question whether the ball actually bouncps

infinitely many times, but in our model we consider this to

be the case. More sophisticated models of the bouncing ball

are possible taking into consideration all of the phenomena

mentioned above and others. But in any case, in using math-

ematics to describe real life occurrences some model is either

tacitly or explicitly being used. The "correct" answers to

such problems are considered to be those calculated by use of

the model and not those obtained by performing the experiment

and making measurements.)
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PROBLEMS

I. Consider the sequence

d
1

= I

d
2

= I + r

d
3

= I + r + r2

d
4

= I + r + r2 + r3

dn = I + r +'r2 + r3-4- + rn-1

(a) Compute rd4 d4.

.:1)) Compute a new expression for d4 by dividing your

result in part (a) by r-I, (Assume r # I.)

(c) Repeal steps (a) and (b) with n in place of 4.

(d) To what value does the sequence d
n

converge if

I r 1<i?

(e) Can yon, determine whether or not the sequence dn

converges if r'l?

2. Repeat Problem I with the sequence indicated below,

where k is some number.
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d = k
1

d = k + kr
2

d = k + kr
3

d = k + kr
4

+ kr2

+ kr2 + kr3

d
n

= k + kr + kr2 + kr3 + + krn-1

3. For each sequence indicated, compute the number to

which the sequence converges.

1

4

1

(a) do = 1 + f +
'ET

+ + +

2
n-1 1

(b) do +
I

4
+

I

8
+

I

+ _21n
n

=
2 16

(c) do = 10 + 2 + 2 2
++

25
5
n2-2

14 28 56
(d) d

n 3 9 27 7 . (-1)n-1

4. (a) Show that the repeating decimal 0.232323...

2 3
2 3(that is, TO TUT

+
T l000 l0000

+ ..) is equal

_,_ 23
To

99
--

(b) Show that the repeating octal number 0.451451451...

4
+ +

1

+ + + 1 +(that is, T3- , T 1 7 , 7. 1 7 1 7 4 e.e) is

8 8 8 8 8

equal to

4.82.+ 5.8 + 1

83 I
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(c) Show that in the base B number system (for any

integer B>1), the expression

0.c1c2...cndid2...dmdid2...dm... (where di...dm

keeps repeating) represents a rational number.

Hint: The value of the first n+km digits is

C+ i (r-)- + D + + ...D D
)

B
n \I BBm

m

where
c

1
c

2 u.

c
n

di d
2

d

C = + + ... ,
B

and D = .e-- + -- + ... + ---.

B2 B
n B2 B

5. Suppose that Katonah loses a war against Nashville and

agrees to pay reparations in perpetuity as follows:

1000 knashes the first year; each year after the first,

1

the amount to be paid is T of the amount for the 'preceding

year. Suppose that fractions of knashes are minted

in such a manner that each year it will be possible for

the exact debt to be paid. How much will be paid

during eternity?

6. The 'calf -life of a radio-active isotope is the time in

which half of any given quantity will decay. For ex-

ample, the half-life of Strontium 9U is about 25 years.

Thus,:half of any quantity of Strontium 90 will decay

in 25 'years, three-fourths will decay in 50 years,

seven-eights will decay in 75 years. Indeed, for any

postive, integer n, the fraction which decays in 25n years
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will be

+
4
-

8
+ - + .

2n

For each of the following elements, calculate the amount

of the element that will have decayed and the amount that

will remain after the indicated time.

(a) I oz. Strontium 90 (half-life 25 years); 1000 years

(b) 3 oz. Strontium 90; 1000 years

(c) 3 oz. Strontium 90; 3000 years

(d) I oz. Rubidium 87 (half-fife (1.2)(1011) years);

(1.2)(1011) years

(e) 16 tons Rubidium 89 (half-life 15 minutes); 24 hours

(f) I oz. Beryllium 8 (half-life 1010 seconds); I

second (You may estimate the answer to part (f).)

(g) I lb. Radium 226 (half-life 1600 years); 16,000

years

7. Suppose that a bull breaks half of the remaining dishes

in a china shop every 20 seconds. If the shop originally

has 64000 dishes, how quickly must the bull be routed

in order to save 1000?

1 59
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4. Definition of Convergence

We have seen enough of the usefulness of sequences to

warrant their systematic study. First we give a formal

definition of a sequence.

Definition. A sequence is a function whose domain is

the set of positive integers. (We have not said what

the range of the function must be. This is in fact

quite arbitrary. But for most of our sequences in the

present chapter, the range will be a set of real numbers.)

Thus in our sequence, a, of approximations for the square

root of 2

n

2

3

4

a ( n )

1

3/2

17/12

577/408

we have a(I) = I, a(2) = 3/2, a(3) = 17/12, etc. However,

in the case of sequences it is customary to depart from the

149
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ordinary function notation and use subscripts, writing

3 7 577
a = 1, a 7' a3 1

1

2'
a etc.

TUT'
1 2 4

Sequences are usually defined by means of some formula,

such as

b
3n2 4

n 2n2 + 3
n = 1, 2, 3, .

or by means of a recurrence relation by means of which terms

of a sequence are defined in terms of their predecessors.

An example of this is the above sequence for the square root

of 2 in which the terms are defined by

a = 1

2

a n-1 +
an -1

a
n 2

n = 2, 3, ...

Not all sequences converge. For example, the terms of

the sequence

cn = n
2 n = I, 2, 3, ...

"go shooting off to infinity" while the terms of the sequence

1 6
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dn = (-I)n n = I, 2, 3, .

oscillate between -I and I and do not "zero in" on one

particular value.

To be precise, it will be necessary to pin down the

concept of convergence by giving a definition of it. In

our earlier work on sequences of approximations, we said

that a sequence converged to a number L provided that the

sequence could be used to approximate L to any desired degree

of accuracy. This is intuitive but rather vague. We can,

however, give this statement a precise meaning. Before we

talk about approximating to any desired degree of accuracy,

let's talk about approximating to a given fixed degree of

accuracy.

When we say that a sequence an, n = I,2..., approximates

a number L with accuracy s , we mean that if we start computing

terms of the sequence,we eventually get to the point where

all the remaining terms will differ from L by less than e .

This condition can also be phrased geometrically, to wit:

Consider an interval centered at L with radius E (the radius

of an interval is half its length). Now after n reaches a

certain value, then for all higher values of n, the terms

a
n

will lie in this interval.
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L

\------Y"'"""

As an example, we will show that the sequence

a

2
n + 1

n

n = I, 2, 3, .

approximates the number I with accuracy 1/100. First of all,

note that all terms of this sequence are greater than I since

the numerator is greater than the denominator. On the other

hand, by writing an in the form

an = I +

we see that as the value of n is increased, the value of a
n

decreases. Thus for all n greater than 10, we have

1 < a
n

< a = 1.01
10

Therefore, after the 10
th term all succeeding terms will lie

in an interval of radius 1/100 centered at I. And this means

that the sequence an, n = I, 2, 3, ..., approximates I wifh

an accuracy 1/100 according to our definition.

152
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We must point out that there are many other numbers which

this sequence approximates with this accuracy. For example,

for all n greater than 10, we have seen that an lies between

I
and 1.01 and hence all these a n

lie between 1.005 - .01

and 1.005 + .01 (that is, between .995 and 1.015). Hence,

this sequence approximates 1.005 with accuracy 1/100.

Similarly, the above sequence approximates I with accuracy

1/1,000,000 since for n > 1000, we have

I < an < a
()loo

=

1

+
1,000,000

so that all terms after the 1000
th term lie within 1/1,000,000

of I. (Note that this sequence does not approximate 1.005

with accuracy 1/1,000,000.)

Now we are ready to give a definition of convergence.

Definition. A sequence a
n

, n = I, 2, ..., converses

to L provided that for every positive number c , the

sequence approximates L with accuracy c

This is what we meant earlier by our vague talk of a

sequence approximating a number to any desired degree of

accuracy. If this definition is interpreted geometrically,
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it says that for whatever positive e we choose, we eventually

reach the point where all further terms of the sequence lie

in the interval centered at L with radius e

L-e L Li-e

The above definition is generally worded in this some-

what more readily usable form:

Definition. A sequence an, n = I, 2, ..., converges

to L provided that for every positive number e there

is a number N so that for all values of n greater than

N, an differs from L by less than e.

We can easily show that the sequence

fi
2
+1

a
n

n
2

n = I, 2, 3, .

actually converges to I. C:,,en an arbitrary positive number

e , we need only exhibit a positive integer N such that

for all n>N. Now

n2+1
I 1 e

n2

154
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n +I

n n
2

and 2 Y E
c if n2>i, that is if n>7

I Thus, N may be taken

n

to be any integer greater than

This shows that the sequence an, n = I, 2, ..., approximates

I with accuracy E. And since E was quite arbitrary except

for being positive, we see therefore that for every positive

number E , the sequence an, n = I, 2, 3, ..., approximates

1 with accuracy E . In other words, the sequence converges

to I.

There are several theorems we should like to prove

about convergence. The first of these is that a sequence

cannot converge to two different numbers. For suppose

al, a2, a3, ... is a sequence and that L and M are two

different numbers.

L
M

Choose small intervals I and I

2
centered at L and M which

do not intersect.

1 2

-10,""1"1--
L M
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If the sequence converges to L, then after a certain_point

all the terms in the sequence will lie in the interval I

1

so that none of these terms will lie in I . Thus, the sequence
2

cannot converge to M.

Hence, we see that the number to which a sequence con-

verges (if the sequence converges at all) is unique. This

number is called the limit of the sequence.

Definition. We denote by

lim a
n

n÷=,

the number to which the sequence a
1 2 3
, a , a , ... converges.

If the sequence does not converge, we say that lim an
n÷=,

does not exist.

Thus, according to the previous example, where

n2 + I

a
n

n, = I, 2, 3, ...
n2

n2 + Iwe can say that lim a
n

= I or, replacing a
n

by , we
n÷co n2

may write directly

n2 + I

lim I.

n÷c= n
2

151



www.manaraa.com

You will be asked in the problems to prove that if rn

is a convergent sequence and if rn>a for all n, then lim rn >a.

it follows that if r
n

is a convergent sequence and r
n
>a for

all n, then lim rn>a, but it need not be true that lim rn>a.
n.4-co

n.4.co

2

For example,
n + I

>1 for all n, but we tave just seen that

n2

n2 + I

lim -I. Similar statements can be made with < and

n2

< in place of > and >.

It will also be a problem to prove that if xn and yn

are convergent sequences and xn>yn for all n, then

lim xn> lim y n
. The corresponding statement or < is true,

but the corresponding statements for > and < are subject to

the reservations of the previous paragraph. Be certain to

notice the hypothesis that xn and yn are convergent sequences.

For example, 5+(-I)
n
>
n2 + I for all n, and lim I,

n
2 + I

n2 n+0, n
2

but it is not correct to conclude that lim [5+(-1)n]>I,
n4-03

because lim [5+(-I)
n ] does not even exist.

n."

Another problem will be to prove that if lim x
n

= a
n.+0°

then lim Ix
n
Hal. You should determine for yourself what

n.4"

can be said about the convergence of the sequence xn if
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lim Ix n1 =a.

n-)-co

Example: An interesting example of a sequence defined by

a recurrence relation is the Fibonacci sequence. In this

sequence, the first two terms are I and each subsequent term

is the sum of_ its two immediate predecessors. A few terms

of the Fibonacci sequence are:

I, I, 2, 3, 5, 8, 13, 21, 34, 55, 89, .

Thus, the terms an of the Fibonacci sequence are de-

fined by the following conditions:

a = 1

1

a = 1

2

a
n+1

= a
n
+ an -1

n = 2, 3, .

A flow chart for generat-

ing the terms of the Fibonacci

sequence is shown in Figure

4 -I. Here the variables

ASUBN, ASNMI, and ASNPI

stand for an, andn' an-1'

a
n+1'

respectively. The

use of MAX is to prevent

158
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overflowing your word-lengtt.,. The input value of MAX should

not exceed hall' of the largest integer expressible in your

machine.

The Fitonacci sequence obviously does not converge.

The terms, increasing by at least I each time, eventually

exceed any prescribed bound.

We call attention here once and for all to a principle

which slightly generalizes the meaning of "sequence"; namely,

if we alter the values of the first 53 terms of a sequence

al, a
2

, a
3

, this will not affect the convergence or di-

vergence of the sequence nor the value to which it converges

if it does converge. To see this, we need only require that

the value of N in the definition be always taken greater than

53. Thus we may always be oblivious, in questions of con-

vergence, to what happens to the first 53 terms, or even to

whether they are properly defined. Of course, this principle

is valid not only for 53 terms but also for 279 or 8967 or

for any fixed finite number of terms.

For example we might define an = (n-3)1(n-5)
. Clearly

this is meaningless for n = 3 and n = 5. We blithely ignore

this fact in discussing the convergence of the sequence since

there are only finitely many integers for which an is undefined.

In light of these remarks one may, if he wishes, adopt a modi-

fied definition of sequence as a function whose domain is the

set of all positive integers greater than some arbitrary number.
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PROBLEMS

I. For each of the sequences indicated below, determine

whether the sequence converges, and if it does, find

the limit.

(a) an
n

(b) b
n

Hint: iftz+1 >n, so <

inz+1

(c) c
n

1 if n > I, and cl = 14.

n -I

(d) d
n
= cos nv

(e) e
n
= cos 2n7

(f) f
n

= /4-cos 2nIT

(g) gn

Let d
n

= (-I)
n

. Answer each of the following questions

and justify your answer.

(a) Does

(b) Does

2 +

(c) Does

(d) Does

(e) Does

the sequence dn approximate 2 with

the sequence dn approximate -1 with

1,000,000

the sequence d
n
approximate I with

the sequence d
n

approximate 0 with

d
n

converge?

160
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I

3. The decimal expansion of 7. is 0.142857142857142857....

Let a
n

be the sequence of numbers obtained by keeping

the first n digits of the expansion. That is,

a
1

= 0.1

a2 = 0.14

a3 = 0.142

etc.

(a) Does this sequence approximate 0.14 with accuracy

0.003?
I .

(b) Does this sequence approximate 7 with

0.003?

(c) Does this sequence converge to 4-.?

4. Prove that each of the following sequences fails to converge.

(a) a
n

= n
2

(b) b
n

= (-1)n

5. Affirm or deny each of the following statements and

justify your reply.

(a) If r
n

> a for all n, and if r
n
converges, then

lim r > a.
n

n4c°

(b) If r
n

> a for all n, and if r
n
converges, then

lim r > a.

n4c° n
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(c) If r
n

is a rational number for all n, and if r
n

converges, then lim r is a rational number.
n÷cc, n

(d) If x
n

> y
n

for all n, and if both x
n

and y
n

converge, then lim xn > lim yn.
n÷0. n.+0.

(e) If xn > yn for all n, and if y
n
converges, then

x
n

converges.

(f) If x
n

and y
n
are sequences which converge to the

same limit m, then lim z, = m, where zn is the
n+co

sequence xi, yi, x2, y2, x3, y3, ...

(g) If lim r = m, and if s
n

is defined by s
n

= r
n+1

n.+0. n

then lim s
n

= m.
n.+0.

(h) If lim x
n

= a, then lim Ix
n

I -dal.
n+co n+03

(i) If x
n

is a sequence and the sequence y
n = Ix

n 1

converges, then the sequence xn converges.

6. Let T be defined for all positive numbers x by T(x) x+2
x+1

(a) Show that T(x) > /7 if x < 7, and T(x) < 7 if

x >

(b) Show that 1T(x) - 71 < (7 - 1) lx-/71.

Hint: Show that IT(x) - /71 T(x) -/ Z. - 1

x - 2 /T - x x + I
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(c) Let a
n
be the sequence defined by al = I, and

a
n+1

= T(a
n

) for n > I. Show that a
n

is a sequence

of rational numbers which converges to /T.

(d) Calculate a , a , a , and a .

2 3 4 5

(e) Write a program to approximate if by calculating

terms of the sequence an until two successive

terms differ by less than 10
-6

. Have the program

print the number N of terms calculated, and the

average of the last two terms. Compare the rate

of convergence with the rate of convergence obtained

by the program written for Problem I of Section 2 -I.

The "arithmetic-geometric" mean M of two positive numbers

a and b is defined as follows: suppose that a < b and

define a recursion formula by a
1

= a, b
1

= b,

a + b

a
n+1

= b
n

n+1 2

n We get two sequences
n n'

a
n

and b
n
and it will be shown later that both sequences

converge to the same limit M. Write the appropriate

flow-chart and program for computing an c-approximation

to M, and carry out the computation for c= .000005 and

the following pairs of values of a and b.

a = I, I, 5, .001, I , 10

b = 2, 10, 6, 1000, 106, 10

Draw some conclusions from the last three cases and

prove your conclusions if you can. Is this an efficient
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algorithm, in the sense of giving an accurate result

in few steps? Try some of the above cases for the

smallest E that you can use on your computer and see

how many more steps are needed.

8. Modify the Fibonacci sequence flow chart so as to

output a running total of the first n terms of the Fibonacci

sequence, i.e.,

s = a + a + a
n n

1 2

Your output box should have the form

N, ASUBN, SSUBN

Write the program for this flow chart and run it. Can you

spot a simple relationship between terms of the sequene

s , s , s , ... and terms of the sequence a , a , a , ...?
1 2 3 1 2 3

Can you prove that this relationship always holds true?

Hint: You may want to use mathematical induction.

9. Check for convergence:

(a) 47, 183, -1010, 62.5, 1/2, 1/3, 1/4, ..., I ...

(b) 1, -4, 2, 1/8, -1/16, 3, 1/32, -1/64, 4, 1/128, ...
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5. The Simplest Limit Theorems

In the preceding section (Section 4), we had shown that

n

n2
2 + 1

I I M = 1 .

n÷0.

We did this by means of the definition of convergence using

e and N, and it was a relatively tedious process. When the

rule of formation of the terms of a sequence is fairly com-

plicated, the e and N process becomes positively painful.

Fortunately, there are theorems available which help

us to avoid such unpleasant calculations. Among such theorems

(as we will presently prove) are the sum and product theorems

for limits:

if lim a
n

= A and lim b
n

= B

'then lim (a
n

+ bn) = A+ B

and lim (a
n
b
n

) = AB

The conclusion of the Sum Theorem could be written as

lim (a
n

+ b ) = lim a + lim b
n n n

which tells us that we may interchange the order of adding

and taking the limit. The theorem is often verbalized as

"the limit of the sum is the sum of the limits".

r
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Returning to the example above, we could write:

n2+1 n2 1 1

= -T T1.2 = 1 T

Applying the Sum.Theorem, we have

n21 1
1

lim lim (1 + 2) = lim 1 + lim 2
n+c°

Since it is quite vious that

we have

. 1

lim 1 = 1 and IIM -2= 0,
n4.0. n

n +1
lim 1 + 0 = 1.

This example provides us with an excel reason for

wanting to have the Sum Theorem and similar theorems for

products and quotients, etc., at our disposal. These theorems

often enable us to decompose complicated limits into combi-

nations of limits so simple as to be obvious on inspection.

The sum and product theorems themselves should seem

quite obvious, for if n is large enough so that an is very

close to A and b
n

is very close to B, then an + bn ought to

be very close to A + B, and anbn ought to be very close to

AB. We are glad that this simple-minded way of looking at

things is at hand to lend credibility to these theorems. But

proofs are nevertheless necessary fo, wo reasons:

I) the theorems are not all that obvious; the reasoning

having been offered in their support will leave the

166
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critical reader with an uneasy feeling in the pit

of his stomach; and

2) we want to be sure that these theorems actually

follow from the definition of convergence on which

foundation we propose to erect a lofty edifice.

Now let's see how these proofs go.

Theorem 1. (Sum Theorem) If lim a
n

= A and lim b
n

= B, then
n÷0.

lim (a
n

+ b n) = A + B.

Proof: Consider an interval I with center A+B and arbitrary

radius E.
I

A+B

Let I
1

and I
2
be intervals half as long as I, centered at

A and B, respectively.
I2

Ei E/ E/ E/
2 2 '2 2

! I I I

A B A+B

If for some value of n, an lies in I1 and bn in 12, then

we have

and adding

A - E/2 < a
n

< A + E/2

B - E/2 < b
n

< B + E/2

(;" 161
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A+B-e< an+bn<A+B+E

so that an + bn is in the interval I.

And since lim a
n
= A and lim b

n
= B, we know that there

n+m n÷.0

are numbers N1 and N2 so that for n > N1, an is in I1 and

for n > N2, bn is in 12. Taking N to be the larger of N1

and N2, we see that when n > N, we have an in 11 and bn in

12 so that, as seen above, an + bn is in 1. Thus, the re-

quirements of our definition are met and wr: can conc:ude that

lim (a
n

+ bn) = A + B .

n+m

The next two theorems and their proofs are quite simple.

The proofs will be left as exercises for the student.

Theorem 2. lim = k

n+m

Theorem 3. If lim a
n
= A, then lim (Ka

n
) = KA

n+m n+m

Corollary 1.If lim an = A and lim bn = B, then lim (an - bn) = A

n+m n+m n÷m

Proof: lim (-b
n

) = lim (-1)b
n
= -1.B = -B by use of Theorem 3.

n+m n÷m

Thus, lim (a
n

- b
n

) = lim (a
n

+ (-b
n
)) = A + (-B) = A - B by

n+00 n+m

Theorem 1.

Corollary 2.If lim an = A, then lim (an - A) = 0. The proof
n+m n+m

is left to the reader.

"..11411
le*
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Corollary 3. if lim a
n

- A) = 0, then lim a
n

= A.

Again the proof is left to the reader.

169 Ifj',9
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PROBLEMS

1. Find two nonconvergent sequences whose sum converges.

2. Prove that if lim xn > a and lim yn > b, then
n+.0

lim (x
n
+ y

n
) > a + b.

n4.0.

3. Prove that if lim xn > a and lim yn < b, then
n+.0

lim (x
n

- y
n

) > a - b.

4. Prove that if lim xn > a and k > 0, then lim kxn > ka.

n+.0

5. Prove that if lim x
n

> a and k < 0, then lim kx
n

ka.

6. Prove Theorem 2.

7. Prove Theorem 3.

8. Prove Corollary 2.

9. Prove Corollary 3.

I0. Suppose an is a sequence which approximates A with

accuracy c and b
n

is a sequence which approximates

B with accuracy n. Prove that the sequence a
n
+b

n

approximates A+B with accuracy E+n.

II. Suppose b
n

is a seauence which approximates B with

accuracy n. Prove that the sequence -bn approximates

-B with accuracy n.

»o



www.manaraa.com

12. Let a
n

and b
n

be as in Problem 10. Prove that the

sequence an bnapproximates A-8 with accuracy e+n.

Construct an example to show that an- bn need not

approximate A-B with accuracy e-n even if e-n > 0.

13. Let a
n
be a sequence which approximates A with accu-

racy e, and let k be some -umber. Prove that the

sequence kan approximates kA with accuracy Ike.

111 1 82
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6. Product dr),. Quoti:,:nt Theorems

A sequence al, a
2

,

3

, ... is called bounded provided

that all the terms of the sequence lie in some interval

lower bound upper bound

II 1 I I

b ai a6 aza4a3 a5 B

The left and right end points of such an interval are called,

respectively, lower and upper bounds 'or The sequence. It

is clear that if we can find one such interval, we can find

many. lower bounds upper bounds

I I I II ti 1 I

b' b" b al a6 aza.4 a3 as B 13 B"

Also it is quite clear that given a 3c.'unded sequence, one

can find an interval centered at the orisHi in which all

-M 0 b al a a.2a.4, a.3 as BM

the terms of the sequence lie. That is to say,

-M < a < M
n

n = I, 2, 3, ...

t
112 x83
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This can be expressed inure concisely as

Ian' < M n = I, 2, 3, .

We wall use this form in our "official" definition of bounded-

ness.

Definition. We say that a sequence a , a , a , ... is
1 2 3

bounded provided that there is a number M so that

la
n

I < M for all positive integers n. Such a number M is

called "an upper bound for the absolute values of an."

We can see that the sequence

a
n

= n n = 1, 2, 3, .

is not bounded, for, no matter how large a number M may be

chosen, we will be able to find n so that ar > M.

On the other hand, we can see that the sequenk-:e

an = ( -I)n n = I, 2, ..

(that is, the sequence whose terms have the values

-1, 1, -1, I, -1, 1, ...) is bounded since for this sequence

Ian' = I(-1)n

are satisfied :yith M taken to be or, for that matter,

I, so that the conditions of the .1-..ifinition

*
1.13
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any number greater than I.

This sequence, an=(-I)n, n=1, 2, ..., clearly fails to

converge, and so it is evident that a bounded sequence does

not necessarily converge. On the other hand, we have

Theorem 5 If the sequence a , a , a , ... converges, then
1 2 3

it is bounded.

Proof: Denote the limit of the a
n

by L. We can find a

positive integer N so that for all values of n with n > N, we

have a
r

between L -1 and L+1.

L-1 L L+1

Thus, for all n > N, we have

lard < ILI + I.

(This takes care of both the case that L is positive and the

case that L is negative.) The number ILI+1 is now P candidate

for the M in the definition. The only terms of the sequence

whose absolute values could possibly exceed 'WI are

a , a , a , aN_,.
1 2 3
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Since there- are only finitely many of these, we can check

them all out. 4e let M be the largest of the numbers

ILI I, 'all, la21, 1a31, I aN _11

and then we will have la
n

< M for all positive integers n.

Theorem 6. If lim a
n

= 0 and the sequence b , b , b ,

n÷c.
1 2 3

is bounded, then the sequence

ab,ab,ab,.
1 1 2 2 3 3

converges to zero.

Note that we do not assume that the sequence b , b , b ,

1 2 3

converges. Thus, for example, we could apply this theorem

to prove that the sequence

I

n

converges si:lce

n = I, 2, 3, 040

lim -1r1- = 0
n÷.=,

and sin n is bounded (lsin nl 1). This is true even though

the sequence sin n, n = I, 2, 3, does not convec-7e.

Proof: 0. Let M be an upper bound for the a,solute

value of the b
n

Choose N so tnat for n > N, we have

175
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F < an F

(in other words, so that (ani < ).

Then for n > N, we have

la
ni

< and lb
n

1 < M

so that

lantni < (L)M = E

or in other words, for n > N,

E < a nbn 0 <

which is what is _eeded to show that the sequence anbn,

n = I, 2, 3, . , converges to 0.

Theorem 7. (Product Theorem) If Hai a
n
=A and lim b

n
=B,

then Iim (a
n
b
n

) exists and is equal to AB.

Proof: Check that

anbn = anB + an (b
n

- B)

116
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Since b
n

B 0 as n4-0,. (by Gor011a °f Theorem 3) and sinQe

the sequence an, n = I, 2,
Is bounded (b' v Theorem 5), we

see try Theorem 6 that lim a
n

(1)0 Q.

n4-00

Theorem 3 assures us that

lim anB = B liy an BA

And now Theorem I (The
irleor,,, 55Ura

1,0)

0
us that

lim anbn exists and is given by

(t)

lim anbn = lim (a
n
0) n-k1 on h 8)

Example. Let x
n
be the sequence

x
n (4 i)(5 1),

n = I, 2, 3, . . Then lim x
n

1-)

i

q) (4 n lim (5 + I)

n4-.

= 4 ; = 20.

In order to prove the remaining 1,wo
thearell we need the

miff it

following lemma whose proct we 0 %vice
f ollows the same

general lines as Theorem 5.

,

Lemma. If the sequence an, n =
1, conVerge5 to a

number different from zero and
ras hone of its terms eq)al

zero, then the sequence
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T T T
1 2 3

is bounded.

Theorem 8. (Reciprocal Theorem) If al, a
2

, ... converges to

a number A different from zero and .,as none of its terms equal

to zero then

Proof:

1 1

lim
n±00

T

A - a
(A - a )()()

an A a
n
A

n

n an A

Since A - a
n

0 as n4-0. and since by our lemma
1 k is bounded,
a
n

then

lim (1 -
.1;) = 0

n ±.0
a
n

\

by Theorem 6.

Theorem 9.. (Quotient Theorem) :f lim a
n

= A and lim b
n

= B

n--

with B / 0 and none of the terms b
n

= 0, then

a
n A

lim =

n-- n
b N

111
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Proof:

Theorem,

lim = by Theorem 8, and hence by the Product
n

a

lim bn = lim(a I = (A)(jg)
n±ecin

n bn

Suppose that an is a sequence which converges to a number

A. If f and g are functions such that

then

and

lim f(a
n

) = f(A) and lim g(a
n

) = g(A) ,

lim (f(a
n

) + g(a
n
)) = f(A) + g(A) ,

lim (f(a
n
)g(a

n
)) = f(A)g(A).

n±o.

If h is eit ,,r a constant function or the identity funct:Dn,

we know that lim h(a
n

) = h(A). Thus if P is any polynomial
n -goo

function,

lim P(a
n

) = P(A) .

n±0,

119
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Now if f and g are polynomial functions and 2 is the

rational function R(x, =
f(x)
g(x)

, we have

lim R(a
n

)

lim f(a
n

)

n"
lim g(an)

f(A)
g(A)

R(A),

providing that g(A) / 0 and g(an) / 0 for all n.

Lxample. Let cn bathe sequence defined by

Then

lim c
n

n-4-Q° lim ((3 + 1)2 -1)

(3 + 1 )2 1_

C
n

=

(3 + 1 )2 - 1

n

lim ((3 + 1)2 + 1)

lim (3 + 1)2 + lim I

n-)-co

lim (5 + 1)2 - lim 1

n-4-co

(lim (3 + 1))2 + I

n

(lim (3 + 1))2 -1

32 + I 10

32 - I

8

111
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Example. Suppose P(x) = 2x3 - 4x2 - 7x - 5, and suppose

a
n

is a sequence which converges to 3. Then

lim (2(a )3 - 4(a )2 - 7a - 5) = 2(3)3 -4(3)2 -7(3) -5
n n n

= 54 - 36 - 21 - 5 = -8

Example. Let an be any sequence which converges to 2 and

for which 3(a
n
)2 - 4(a

n
) 2 0 for any n. Then

(a
n
)2

lim

+ 1 (2)2 + 1 5

n.--0-c° 3(a
n

4(a
n

) - 2 3(2)2 4(2) - 2
2

Example: An interesting sequence can be obtained from the

Fibonacci sequence. Let r
n
be defined by the ratio

r

a
n+1
a
n

where a
n

is the n
th term of the Fibonacci sequence. We will

not now attempt to answer the question cf whether the sequence

r
1

, r2, ... does converge, but we will show how to find the

value it converges to if it does indeed converge. Using

the definition of r
n

and the recurrence relation for a n+1'

we have for n>2,
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series converges absolutely. That is, 2:an is absolutej1

vn,
convergent if 2,1.90 is convergent.

The alternating harmonic series is an example of a

series that converges but does not converge absolutely.

The following theorem shows that the reverse case is

impossible.

Theorem 2. An absolutely convergent series is convergent.

Proof. Let Elan) converge. Define two new series by

b
n

a
n

if a > 0, 0 if a > 0
n n

C =

0 if an < 0,
n -en if a

n
< 0

b > 0 and b < la 1, and hence, by Test I, b
n

converges.
n n

The same As true for 2:c
n

Hence 2:(b
n

-
n

) = 2:a
n

converges. (Problem 1(a) of Section 2).

This theorem will sometimes tell us when a series

containing negative terms converges but never when it

diverges. For example, the series

I

diverges, but none of our tests will give us this infor-

mation. (See Problem 2).

1A
911 9 6' I
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From Theorem 2 and Test 4 we get another useful test

for convergence.

Ratio Test I. If, for sufficiently large n,

i

< MI <
I converges

4.,

a
n

# 0 and 1

a

1.1H then 2:a
na

n > M2 I
diverges

..... L

Proof. If for n > N we have 1

a
+I----1 < M

I

< I then
n

la I < M la
1 m2 la n

1 < . . < M
N
la = CM n, wheren I n - 1 '

I

1

I

I 1

C = MI
-N lao. Since MI < I, 2:CM

I

n converges and hence so

does Ela
n
1, and by Theorem 2 so does Ea

n
.

If for n > N we have 1

a

a

n+I
----1 > M2 > I then, similarly,

n
2

la
n

1 > CM
2
n Since M

2
> I, a

n
does not approach 0, and

the series diverges by Theorem I of Section 2.

The following test is related to +he one above in the

same way that Comparison Test 3 is related to Comparison

Test 2.

+In
Ratio Test 2. If lim

a

a
= M then

n÷m,
n

converges

a n
if

M < I

2:

diverges M > I

If M = I
this test gives us no information,

912
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Example 4, continued. Applying Ratio Test 2, we have

1

Al (n + 1)5(.9)n+1
)

h5(.9)n
.....1

= Alm
n

.9 (n 1
5

Since .9 < I the series converges.

Proof of Theorem 1. We

need consider only the

case of an increasing

sequence. If the theorem

is true for this case,

and if a1,a2,a3,... is a

decreasing sequence with

a lower bound B then

-a1,-a2,-a3,... is an in-

creasing sequence with

an upper bound -B and

so has a limit L. Then

lim a = -L.
n

So let a1 a2 < a
I 2

a3

< < a
n

< < B.

The flow diagram in

Figure 3-I gives the

913

=
5

n
.9 li÷m (I + 14 = .9.

co

a

+<
(A + B

( Statement E
Folf

AL 4.1 AL
B C.

AL 1./ C

LE---L+1

Figure 3-I

AL C an L 1:4
AL.1.1 5 L+4

(a) Statement E is true
!Nils i I

AL L C Bi.
L.I.i a i+i

(b) Statement E. is false.

9 u

Figure 3-2
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essense of the bisection process one follows to produce

two sequences satisfying the conditions of the Complete-

nes Axiom and determining Jim an. Here Statement E is the

following: There is an n for which c < a
n

< B
1.

The

way this statement operates is shown in Figure 3-2. In

each case the half of EA
I

,B chosen for [A 1+1'
B
1+1

] is

the one containing the presumed limit L.

By the usual bisection argument the sequences

AI,A2,A3, and BI,B2,B3, satisfy the conditions of

the Completeness Axiom and so have a common limit L. We

have only to show that L is the limit of al,a2,a3,...

Given c > 0 we must find an N such that

la
n

- LI < c whenever n > N.

Now the length of the interval [Ai,13/] is

Bi - Ai = (B
1

- A ) 2
i-I

,

and so we can find an i for which Bi - Ai < c. Since

B1,B2,... is a decreasing sequence with limit L, L < Bi.

914
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Similarly L > Ai, so L is in the interval [Ai,Bi By

construction, there is an aN in the Interval [Ai,Bi].

If n > N then also

an is in [Af,Bi], for

a
n

> a
N

> A. and

a
n

< B
i

since, by

construction, each

B. is an upper bou.nd

of all the a
n

.

Figure 3-3 illus-

trates the relative Figure 3-3

positions of the

various numbers.

Since, for n > N, both an and L lie in an interval of

length < c we have Ian - LI < c as desired.

aN an L

Like statement M in the proof of the existence of

a maximum, in Section 6-7, Statement E is nonconstructive

since it cannot, in general, be decided in a finite

number of steps.

915
It
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PROBLEMS

I. Prove Comparison Test 3.

2. Show thatmi
W
l'

I + 7 3' + 7 4. 7 +
I7

+
i

'6' 7 + -

diverges. [Hint. CoMpare the partial sums S3,S6,S9,.. .

with the partial sums of the series I + + 4
1

+ ... .

Does this last series converge or diverge?]

3. Test the following series for absolute convergence,

convergence, or divergence.

(a)

(b)

( c )

(d)

co

E
n=1

I

n3

w

E (-1)n-1 n

TITT
n=1

w
E(...1)n-1 n2

h=1 n3 + I

co

k=3
(-1)

k-1
I

1

ki-2-
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(e)

(f)

(g)

(-I)
k-I k

k2 + I

(-I)
k

(k + I)(k + 3)

%n n2

e

co

(h) E ( -1)n
-1 (I + n 2

n=1 (I + n2)

( ) (-I)
n-In

n=1

(j)

00

3n

1)n log n

(k) E (-1)n-1
I

n=1

(I) (-I)
n-

n=1

nn
(n + I)!

4. We often think c+ a real number as an infinite

decimal, e.g.

it = 3.14159265358979...

In general, any positive number A = N.a1a2a3... ,

where N is a non-negative integer and each an has

a value 0,1,2,...,8, or 9. What we mean by this

911

9or
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is that

a
3 E a

na
co

A = N + TU
I

4-

a
2

4. + ... = N +
n=1 10

.

102 103

(a) Prove that any such series converges to a

value in EN,N + I].

(b) What general statement can be made about the

remainder after n terms; that is, about the

error in truncating the number to n decimal

places?

(c) To round off the number to n decimal places

we add 5/10
n+I and truncate. What can be said

about the remainder?

968
918
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4. Infinite Series and Improper Integrals.

There is considerable similarity between infinite

series

00 n

E ak = E a

k=1 k=1

and improper intecrals of the type

J, f(x)dx =
t4lim

Jr
a

f(x)dx...)

To capitalize on this similarity we need the analog for

functions of Theorem I of Section 3.

Theorem I. A bounded monotone function on Ea,c0), has a

limit as x -0- co.

The proof is the same as for the earlier theorem,

with merely the substi+ution of x for n throughout. The

same is true of Corollary I and the comparison tests.

Corollary I. If f(x) .> 0 for sufficiently large x then

f(x)dx converges if and only if Jr
a

f(x)dx is bounded

for all M > a.

919



www.manaraa.com

We leave the statement and proofs of the comparison

tests as an exercise.

Example I. In Example 3 of Section 12-4 we encountered

the integral

jr 3t8 + 4t8 - 4ti - 4t7-7-4t + I

0 (I + t3)2

and made some vague statements about itn convergence.

We can now be good mathematicians and determine its con-
c.

vergence by comparing it with Jr I dt, which converges.
1 t2

Using Comparison Test 3 we have

lim 3/771aLaL. 4 (1..
t-tc° (I I- t3)2 ,t2

= lim
t-0, (I + t3)2

3t12 4t10 + etc.

//I + 4- 4
- - etc.

I

.

M
3 t2 t3

= I

t-00 (I 1) 3

t3

Hence the given integral converges.

920
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Our main interest, however, is in the interaction of

series and integrals, and for this the following theorem

is fundamental.

Theorem 2. If f is a decreasing function then

(I)

and

(2) I
f(k) - f(n) < )( f(x)dx <

n
f(k) - f(m)

m
f(x)dx + f (m) < f(k) < )(

n
f(x)dx + f (n).

c=n

Proof. The inequali-

ties

(3) f(k + i)

fk+ 1

f ( x) dx

< f(k)
Figure 4 -I

k+1

are obvious from Figure 4 -I, since the middle term is the

shaded area under the curve and the two bounds are the

areas of the contained and the containing rectangles. In

(3) let k have the successive values n, n + I, m - I

and add the resulting inequalities. We get

921
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m-I
f(k) < jrn f(x)dx < 1: f(k),

k=n+1 k=n

which is (I). To get (2) we solve the left-hand

inequality and the right-hand inequality of (I)

separately for 2: f(k) and combine the two results
k=n

as in (2).

Although this theorem is stated for any decreasing

function our only interest, by virtue of Theorem I of

Section 2, is in a decreasing function with limit 0.

Such a function is necessarily positive.

Corollary 2. If for sufficiently large x, f(x) is a

decreasing function with limit zero then Jr f(x)dx

and 22f(k) either both converge or both diverge.

Proof. If 2,f(k) converges then the rightmost sum

03

Jr

m
-4-of (I) remains bounded as m . Hence f(x)dx is

bounded as m + ce and by Corollary I the integral con-

verges. If 2: f(k) diverges then the leftmost sum
m

of (I) is unbounded. Hence so is Jr
n

f(x)dx and by

Corollary I the integral diverges.

922 9
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Example 2. The p-series. If p # I,

CO

JI
XPdX = I

x
1-p

rn

1

1
1-p

= , l mim (m - I).
1 - p 4.00

The limit exists only if I - p < 0, i.e. p > I. For

p = I we get lim log m which dour not exist. Hence the
m+03

p-series converges only for p > I.

CO

Example 3. We wish to compute 1] k-2 to 50 accuracy.
k=1

How many terms do we need? From (2) we have

or

1

1

X
-2 dx + < k

-2
< X dx +

in+1 ./n+1
m2 k=n+I (n + 1)2

1 1 1

I 1 1

< I] k
-2

n+ I m
n + I

m2 k=n4.1 (n + 1)2

Now let m co. This gives

1

(4) < R <
n nn+

1

(n + 1)2

R
n
being the remainder after n terms of 2] k

-2
This

k=1

tells us that the remainder decreases quite slowly, like

1 However, (4) also says that
n + I

923
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I < R
2(n + 1)2

n
n + I 2(n + 1)2 2(n + 1)2

1Hence if we add
+

to the n-th partial sum
n I 2(n + 1)2

we get an approximation in error by at most
2(n + 1)2

:'sing this, for 5D accuracy we need an n such that

< 5 x 10
-6

2(n + 1)2

which gives n = 233. In a sum of this magnitude roundoff

error will not be serious but it must be allowed for.

will increase the value of n slightly.

This

IExample 4. Although neither nor f kdx converge,
k=1

the difference of their "partial sums",

(5)
a

Sn =
I

2; - !og n
k=1

does converge as n co. This is evident from Figure 4-2.

111111111
n+1

Figure 4-2

924
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S
n

is the area of the cross-hatched region, and as n

increases this area decreases as pieces of the bottom

rectangle are whittled away. Hence Sn, being a bounded

decreasing sequence (bounded below by 0) has a limit.

This limit, like w and e, crops up in a surprising

number of places in mathematics. It is called Euler's

constant and designated by the Greek letter Y (or some-

times by C or other symbols). Its value to 20D is

y = 0.57721 56649 01532 86061.

Knowing y, the best way to approximate E for large n
k=1

is by replacing Sn in (5) by its limit Y. Thus

100
= log 100 + y = 5.18.

k=1

The error in such an approximation can be shown to be

about 1/n.

This relation indicates the extremely slow growth of

the partial sums of the harmonic series. To have

2] > 100 we need, approximately, log N + y > 100, or

k=1
N > exp(100 - y). This is a very large number. As a

computer exercise the smallest such value of N was computed

exactly. It is

N = 1509 26886 22113 78832 36935 63264 53810 14498 59497.
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PROBLEMS

I. Prove Comparison

and g(x) > 0 on

[a,M] for all

g(x) < f(x)

g(x) > f(x)

Test I for integrals: If f(x) > 0

Ea,c..), and if g(x) is unicon on

M > a, then if

c°
converges

on [a, °) and ;f ./
a

f(x)dx

diverges

so does
fa

g(x)dx.
w

2. State and prove Comparison Test 2 for integrals.

Determine, if possible, the convergence or divergence

of the following integrals.

I

(a) Jr, 7 -x
dx

-
(b) j

1

x
log x e dx

(c) J
m

x dx

(d) JodyIT /y3 +

926 9;
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( e )

(f)

(g)

(h)

(J)

(k)

f:
-z2

dz

f)4
dy

7

dx

3x2 -

fo
dx

ir 4-77

I.

.10m

dz

2 + e
z

Jr
3x ,

ux
/37

4. State and prove a comparison test for improper

integrals of the type 1414. f(x)dx.

fI
5. Show that

0
x-Pdx converges for p < I and di-

verges for p > I.

6. By comparison with integrals of the above type

determine, if possible, the convergence or divergence

of the following inteorals.

921 9
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(a)

(b)

( c )

(d)

( e )

( f )

x et
47- dt

l" f dt.
j0 /177777

fa

a 2
dx. [Hint. Let u = a x.]

(1 log x
JO+ 67

Jr0

tan 2x dx.
n/2

x2)(i k2x2)

dx.

dx, k2 < I.

7. Determine the convergence or divergence of the following

series. Corollary 2 is not necessarily the best test

to use.

(a)

(b)

CO

n=2 n(log n)2

02

n3
22
n=1 4n

co

(c) E 2 sin
n=1 2n

co

(d) 22
1

n=1 /7747-77

928 9 ;-8
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(e) /2 log (3n + I)

n=1

CO

(f) 2] log (I +
1)

n=1

CO

(g) /2 arctan
n=1 n2 + I

1

CO

k + 200 2]
lo

k=1
g (k + 3)

(i)
22 sin k

k= 1 k2

8. in Section 11-8 we defined the gamma function ,

r(x), by

(a)

r(x) = jr
CI

t e-t dt.

By comparison with Enx-le-n show that

1
CO

t
x-1

e
-t dt converges for all values of x.

f I

(b) By comparison with A t dt show that
1

t
x-1

e
-tdt converges for all x > 0.fo

(c) Hence show that r(x) is defined for all x > 0.

929 9 70
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(d) Show that r(x + I) = xr(x) for all x > 0.

(e) Hence show that the value of r(x), for any

x > 0, can be obtained from the value of

r(z) for a suitable z in [1,2). Given that

r(1.5) = 0.88623 find r(.5) and r(6.5).

L/2.

Figure A Figure B

anti

I want to pile dominos, as in Figure A,so as to

get as great an overhang as possible. The first

(top) domino can be put with its center of gravity

over the edge of the second one, so as to give an

overhang of L/2. The c. of g. of these two can

be put over the edge of the third; this gives an

additional overhang of L/4. And so on. We can

obviously do no better than this.

900
930
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(a) Show that if the c. of g..of the first n

dominos is a distance of a
n

from the front

edge (Figure B), then

L
a
n+I

= a
n

+ 2(n + I)

(b) What is the maximum overhang available with 28

dominos of length 2 in.? [Hint. Use Example 4.]

Ans. 3.89 inches.

(c) What can you say about the overhang if there is

no restriction on the number of dominos?

931
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5. Power Series.

We now return to the considerations of Section I

but with a different approach. There we started with

a function f and determined its Taylor series, of the

form

(I) 2] a (x - a)n.
n=0

an (x

we start with the series (I) and see

whether it defines a function. A series of the form (I)

is called a flower series. Every Taylor series is a

power series but the converse is not true.

Of course we are interested in whether or not (I) con-

verges - more precisely, in the determination of those

values of x for which (I) does converge. We see at once

that (I) converges when x = a, for then the series is just

a
0

+ 0 + 0 + 0 + = a0.

To investigate other values of x we need a preliminary

theorem.

Theorem I. If (I) converges for x = x0 it converges

absolutely for any x for which Ix - al < Ixo - al.

If (I) diverges for x = x0 it diverges for any x for

which ix - > Ix0 "" al.

932
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Proof. If Ea
n
(x

0
- a)n converges then la

n
(x

0
- a)

n
I 4. 0

as n co. Hence for n sufficiently large lan(x0 a)

Now

Ia
n
(x - a)ni x - a n

= r
n

,

la
n
(x

0
- a)nl x0 a

with 0 < r < I since we are assuming Ix - al < Ixo - al.

Hence for n sufficiently large lan(x -
a)In rn, and by

Comparison Test I,
n
(x - a)nl converges since Ern

converges. For the second half of the theorem, if

22a
n
(x - a)n converged so would Ean(x0 - a)n by the first

half and Theorem 2 of Section 3. Hence Ea
n
(x - a)n

must diverge.

We can now prove the basic theorem concerning the

convergence of power series.

Theorem 2. For any power series of the form (I), one

of the following is true:

a;

that the series

converges if Ix - al < R and diverges if lx - al > R.

Proof. For simplicity we give the proof for the case a = 0,

1.e. for

(a) The series converges only for x =

(b) The series converges for all x;

(c) There is a positive number R such

(2)

ce

E a xn.
n=0 n

933
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The general proof proceeds similarly.

That (a) and (b) can occur is shown by applying the

CO

Ratio Test to the two series 1] n!xn and
n=0

co

n=0
n!

If neither (a) nor (b) is true, there must be two points

x1 and yl, with x1 / 0, such that (2) converges

for x = x1 and diverges for x = yl.

If x/ < 0 replace it by -x//2;

if y1 < 0 replace it by -2y1.

Then by Theorem I the series (2)

still converges for x = x
1

and diverges for y = yl, and

0 < xl < yl. We now start

the bisection process shown

in Figure 5-I. This gives us

an increasing sequence

xi, x2, ... and a decreasing

sequence y., y2, ... with a Figure 5-I

common limit R, and such that (2) converges at each xi

and diverges at each yi. If lx1 < R there is an x > 1x1

and so by Theorem I,
n
xn converges. If 1x1 >R there

Lf--i I

+'
I a (x + YL)/2 1

( E a.n En converges

F/
XL.1.1

Yiti

XL+1(-----
Y+1

*
1 14-1-1-1

.

is a yi< 1x1 and by Theorem I, 22a
n
x
n

diverges.

934
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In case (c) the number R is called the radius of

convergence of the series. Cases (a) and (b) can be

included in this definition by allowing R to have the

values 0 and co respectively.

The algorithm of Theorem 2 is an impractical method

of determining the radius of convergence, since the

truth or falsity of the branch condition, Ea
n
z
n con-

verges, is difficult to determine. The following theorem

is useful in many common cases.

a

Theorem 3. If li4.0 m --1-1
n., a

n+I
= R< co then R is the radius

of convergence of 2: an (x - a)n.
n=0

Proof. Applying the Ratio Test to the series, we have

convergence or divergence according as

lan+I(x

- a)
n+I

lim < I or > I,
n+co

a
n
(x - a)

n

or according as

(x - a)
n

lim
n.co

a
n+I

(x - a)+11

an

n

> I or < I.

This limit is
x a

, and so we have convergence or

divergence according as R > lx - al or R < lx - al. This

is just the condition that R be the radius of convergence.

935
98_
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Example I. The Taylor series for log x about I is

Hence

1

(x - I) -
2
(x - 1)2 +

3
(x - 1)3 - .

1 )
= lim n I = I.Al4 1;11-1 = lim

n44. n n+ I n-440 n
n+I

Hence R = I, and the series converges for Ix - 11 < I

or 0 < x < 2, which agrees with what we found at the end

of Section I.

Example 2. The Maclaurin series for sin x,

sin x = x - - X 3 1- X 5 _
!

,

1

has coefficients n. I, 0,-5T, 0, 5T, ...,

and Theorem 3 obviously cannot be applied. Ho,ev,,r, we

can put z = x2 and write

sin x = .x(1 - 3! z +
1 z2 - ...),

!

and apply Theorem 3 to the series in z. We aet

1

R = l ni+0. m( ) lim (2n + 2)(2n + 3) =
(2n + I) (2n + 3)! n+co

in agreement with Problem 4 of Section I.

Neither Theorem 2 nor 3 tells us anything about

convergence when Ix - al = R. Anything can happen

here, as Is shown by the following examples, each of

which has R = I:

936 9,36
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n

(a) E x
n2

converges at both I and -I;

(b)
x

L-0 n
converges at -I but not at I;

(c) 2: xn converges at neither I nor -I.

Frequently the behavior at the ends of the interval of

convergence is of no great Interest. If it must he

determined the methods of Sections 2 to 4 are available.

For values of x within the interval of convergence

the relation

f(x) = 2] a (x a)n
n=0 n

defines a function, since for each such x, f(x) has a

definite value. The manipulation of these functions,

for a given value of a, is particularly simple, being

essentially the same as for polynomials. For simplicity

we use a = 0 in the following discussion; in any case

one can achieve this by introducing a new variable

z = x - a and using power series in 2.

931 9 s7
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The polynomials,

f(x) = a
0
+ a

I

x + a7x2 + + a
n
xn

'

g(x) = b
0

+ b
I

x + b2 x2 + + b
n
xn

have the properties:

(a) f(x) ± g(x) = (a0 ± 1)0) + (al ± + + (an ± bn)xn;

(b) cf(x) = ca
0

+ ca
I

x + + ca
n
x
n

;

(c) f(x)g(x) = a0b0 + (a0b1 + a1b0)x + (a0b2 + alb, + a7b0)x2

+ + (an
-I

bn + an b n-I
)x

2r1-1 + anbnx
2n

;

(d) ft(x) = a
I

+ 2a
2
x + 3a

3
x2 + + na

n
xn-I.

x

(e) j0 f(t)dt = a0x + ax2 + a7x3 + + 7-7T anx
n+1

7 7

The corresponding properties of power series are

stated in Theorem 4. Proofs of (a) and (b) follow from

Problem I
of Section 2 but (c), (d), and (e) are much harder

and proofs will not be given here.

938
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Theorem 4. Let

CO

f(x) = 2: a xn and g(x) = 2: b xn
n=0 n n=0 n

have radii of convergence RI and R2 respectively. Then

CO

(a) f(x) ± g(x) = 2: (an ± bn)xn, R = min (RI,R2);
n=0

(b) cf(x) = 2: ca xn R = R
n=0 n

I '

(c) f(x)g(x) = a0b0 + (a
0
b

1

+ a
1

b
0
)x + (a 0b2 + a

1

b
1

+ a2b0 )x2

+ + (a Ob
n
+ alb

n-1
+ + a

n
b
0
)xn

R = min(R R
2

)

(d) f'(x) = a
1

+ 2a
2
x + 3a

3
x2 + + na

n
xn-1 + R = R

1'

1

x
(e) jr

0
f(t)dt =a0

z
x+ w al x2 x2 +la2 x3 + + nll a

n
x
n+1

R = R
I'

In each case R is the radius of convergence of the series.

Example 3. We have established that

(3) 1-7-7 =
X. + x2 -

939
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and so, setting x = t2,

I + t2
- t2 t4 - 1.6 4. itl < I.

Integrating from 0 to x we have, by (e),

(4)
I

arctan x = x -
3 + yx 5 I 7

- +

Example 4. Starting again with (3) we get by differentiating

and changing signs,

I I - 2x + 3x2 - 4x3 +
(I + x)2

We can get the same result from (c) by multiplying the

series in (3) by itself. It is often convenient to do this

by the method used in elementary algebra for multiplying

polynomials:

I + x

I + x

- x3 + IA

I - x + x2 - x3 + ,
I - x + x2 - x3 +

- x + x2 - x3 +

x3 J.
x2 x +

SOSO
I = I - 2x + 3x 2 - 4x 3

+

940
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From (d) of Theorem 4 we get the following Important

result.

Corol lar I. If the series

00

f(x) = I: a (x - a)n
n=0

an (x

a radius of convergence R > 0 then

All derivatives f
(n) (x) exist for lx - al < R;

1 (n)
a
n

= r f (a), n = 0, I, 2, ;

n.

1, a (x - a)n is the Taylor series of f(x) about a.
n=0

an (x

By Theorem 4(d),

f/(x) = 2: na (x - a)
n-I

=
2] na (x - a)

n-I

n
n=0 n=1

Applying Theorem 4(d) to this series gives

I x I < R.

f"(x) = I] n(n - 1)a (x - a)
n-2

= 2: n(n - 1)a
n
(x - a)

n-2

n
n=1 n=2

Ix' < R.

And so on. In general

(5) f
(k) (x) = 22 n(n - 1)...(n k + 1)a

n
(x - a)n-k, Ix' < R.

n=k

941
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Putting. x = a In (5) gives

f
(k)

(a) = k(k - 1)...laa k = kia
k'

which gives (b). (c) follows at once from the definition

of a Taylor series.

This corollary tells us, among other things, that

there is at most one way of expanding a function in a

power series in x - a, namely, the Taylor series about a.

Thus two power series that equal the same function must

have their corresponding coefficients equal. This

enables us to use the method of undetermined coefficients

to compute terms of a Taylor series.

Example 5. To find terms of the Maclaurin series for the

function

(6)
cos x

I + ex

we assume that

f(x) = a
0

+ alx + a2 x2 +

and write (6) as

cos x = (I + e
x
)(a

0
+ alx + a2 x2 + ...)
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or

1

I + Ox -
2
x 2 + Ox3 + --X4 +

24

X(2 + x +
2 6

2 3 +
24

4 4. ...)(a
0
+aix+ a2x 2 + .)

= - --x

1

= 2a
0

+ (2a
1

+ a
0
)x + (28

2
+ al

2
+ a

0
)x2

1 1

+ (2a
3

+ a
2

+
2
a

I 6
+ a

0
)x3 +

Equating coefficients of powers of x gives

2a
0

=

2a
I

+

2a
2

+

I a0=0 2
,

1

a
0

= 0, a =
1 4 '

1 1
I

a1 +
2
a = a

0 2 ' 2 -4 '

7
283 + a

2 2
+

I
6

+
I

0
= 0, a3 48 '

and so on. Since we have formulas for the n-th terms of

the two given series the above equations are the first few

cases of a general recursion formula,

a
n -2

1.4.Zan +
1! 2!

a
0

riT

0 if n is odd

(-I)
n/2

/ni if n is even

for determining an. Our present methods do not suffice

to determine the radius of convergenCe of this series.

From the theory of functions of a complex variable it can

be shown that R = n.

943
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Example 6. We wish to find the Taylor series about I cf

f ( x )

if x = 1 .

To simplify the algebra we set z = x I and find the

Maclaurin series for

lo fl + z)
g(z) = + z) = /loci

Proceeding as above we get

loci (I + z)
= _ 4. q2 _ 123

z 2 3 4

= (a
0

+ a
I

z + a
2-
72 + ...)2

a02 + 2a0alz r (2a0a2 + a12)z2

+ (2a
0
a
3

+ a
I

a
2
)z3

+ (2a
0
a
4

+ 2a
1

a
3

+ 2)z4

Hence a02 = I and since f(0) = 1, we must take a
0

= I;

2a
0
a

1

=

2a0 a2 + a
1

2 =
3

944
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a1 =
4

13a2 = 7T ,
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and so on. Finally,

13
f(x) = I -

4
(x - I) +

96
--(x - 1)2 + + a

n
(x - 1)

n
+

where the coefficients are defined by the recursion formula

k20
= (-I)n/(n + I), a

0
= I.

0

You can see how this method might be used for a wide

variety of problems. For instance, referring to Example I

of Section 7-2, if we put

CO

y = f(x) = 2] a (x - a)n,
n=0

an (x

can solve

x3 + f(x)3 = 3xf(x)

a = I, a
0

= .35

for al,a2,..., thereby obtaining a Taylor expansion of the

implicit function discussed in that example.

Another application is to differential equations. The

equation

945
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(7) dx
= x2 y2, y(0) = I,

for example, can be solved by putting

(8) y = a0 + a1x + a2x2 +

and_ solving

a + 2a
2
x + 3a

3
x3 + = x2 + (a

0
+ax+a2 x2 + ...)2

a
0

= 1,

successively for a1,a2,... . In this type of problem the

determination of the radius of convergence of the series

can be extremely difficult, and in general it can only be

approximated by numerical computation.

There is a serious objection to this method of getting

power series if we wish to use the series to compute approx-

imate values of the function; namely, we have no bounds for

the remainder after n terms. For instance the series (8)

is readily found to start

(9) y = I + x + x2 + 4%3 + 6%4 + 5%5 +

If we put x= .2, is

S5 = I + .2 + (.2)2 + 4(.2)3 + + 5(.2)5 = 1.256

946
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a good approximation to y(.2), and if so, what is the

maximum possible error? We have no easy way of answering

these questions.

This does not mean that (9) is worthless, for there

are uses for infinite series other than the computation

of function values. One of these is the determination

of limits, the topic of Section 10-4. Suppose, for

instance, that we want to find

I - cos x
1 im

y(x) - ex

where y(x) is the solution of (7). Expanding each function

in a Maclaurin series gives

I im

I I

- (
2

- -x2 + -x 4 - . )
24

"0 4+ x + x2 +
3 + ...) - (I + x + 4%2 + 6x3 + ...)

I I 4
-x 2

+ --2 24x4
= lim ,

X4.0
2

+ 1%3 +
6

I I 2

1
lim

r
1

6
"0

2
+ +

= I.

941



www.manaraa.com

For limits as x a this method is often the simplest

one to use if the functions involved can be expanded in

Taylor series about a.

Power series have many other interesting properties

and applications, some of which are given in the problems.

For the full development and understanding of the theory

of power series it is necessary to allow the variable to

assume values which are complex numbers. The related

theory, the theory of functions of a complex variable, is

one of the most interesting branches of mathematics.

938
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PROBLEMS

co

Find the radius of convergence of 2: anxn for each
n=1

of the

(a) a
n

(c) a
n

(e) a
n

(g) an

following cases, if

= 2n

=
(-2)n
WT--

(n!)2

possible.

(b) a
n

=

(d) a =
n

(f) a
n

(h) a
n

=

(2n)!

= 222_2

n2

nn

sin n

cos (

nn
)-3-

nn
(i) a

n
= sin ( ). [Hint. Try grouping terms.]-3-

2. (a) Derive the "binomial series"

(I + x)m = I
mx m(m - 1)

X +

m(m - I) (m - n + I) n
x

A!

where m is any real number.
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(b) Show that the radius of convergence of the

binomial series is I except when m is a non-

negative integer, in which case it is co.

3. Find the first four non-zero terms of the Maclaurin

series of each of the following functions. If

you can, also find the general term and the radius

of convergence.

(a) ex sin x

(b) tan x. [Hint. tan x

-x
(c) cosh x = ex e

e
x

- e
-x

sinh x =

sin x
]cos x

(d) log cos x. [Hint. Use fo tan t dt.]

I 5 II
(e) /T1ZOI7. Ans. 2 - Tx 2 + 7rTx4 + x1840

6
+

(f) Solution of y' = x + y , y(0) = I.

(g) Solution of y' - y2, y(0) = 0.

Ans. 7x2 - I xs + I ve 7 ,11
75" TO- TM"-

950
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4. The "sine integral" function Si(x) is defined by

Si(x) =
x sin t

t
dt,

(a) Find the Maclaurin series of Si(x).

(b) Thmpute Si(1) to 3D.

(c) Use the computer to compute Si(5) to 5D.

Ans. 1.54993.

(d) Write and run a program to tabulate Si(x) to 5D

for x = 2(.1)7. Compare with page 242 of

"Handbook of Mathematical Tables", Abramowitz

and Stegun, Dover Publications.

(e) This table can also be computed by evaluating

the integral by Simpson's rule. If this is

done efficiently, i.e. without recomputing

the whole integral for each value of x, which

method do you think is most efficient. Give

the reasons for your answer.

(f) Recompute the table using the Simpson rule and

compare, if you can, the machine times needed

for the two method.

951
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5. The following theorem can be proved by methods some-
00

what beyond those of our text: If 1] an converges
co n=0

then the function f(x) = 2] a
n
x
n is defined and

n=0
continuous in -I < x < I. The important point is

the continuity at x = I.

(a) Apply this theorem to

x2 x3 x4
f(x) = x -

2 3 4
+ - +

to prove that

1 11- 7 + -74.. = log 2.

Check the answer of Problem 8,Section 2.

[Hint. Since Iog(I + x) = f(x) for x < I, and

both functions are continuous at x = I, we

must have log(I + I) = f(l).].

(b) Prove that

I

1

3 5 7 "' 7'

(c) Using the method of Problem 8, Section 2,

evaluate it to 2D. (But see Problem 7 below).

0
952
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6. Evaluate the following limits.

t
(a) lim

tan x -
)4+0 sin x - x

(b) lim m
arctan x - x

x40 ex e-x - 2x

(c) lim m
loa (I + x)

x4-0 log (1 x)

(d) lim
x4) 2x

(e) lim
(sin x cos x

x4.0 x3 x2

(f) lim
x4.C)

(g)

(h)

lim
I

x+I log x

lim (tan x - sec x)
x4-7/2

7. (a) Prove the identity

arctan A + arctan B = arctan
A + B
I - AB

by taking tan of both sides.

953
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(b) By successive application of this identity

show that

4 arctan r - arctan
239 4

arctan I = .

(c) Use this identity and the Maclaurin series

for arctan x to compute IT to 4D accuracy,

using pencil and paper only.

This method was used by William Shanks

in 1873 to compute IT to 707 decimal places.

Since the advent of the electronic computer IT

has been computed to more than 100,000

decimal places.

8. Associated with any sequence a ,

0
a
l'

a2".. there is

a power series a0 + alx + a2x2 + . Even though

this power series may not converge for any x except

zero we write

co

n
g(x) = /2 a

n
x

n=0

and call g(x) the generating function of the sequence.

Here is one of the many applications of generating

functions.

954
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(a) The Fibonacci numbers (see Section 2-4) are

defined by

f0 0 fl = I

(i) f
n

= f
n-I

+ f
n-2'

n = 2,3,...

Multiply (i) by xn, sum from 2 to co, and

reduce the result to

(ii) g(x)(I - x - x2) = x

where

(iii) g(x) = fnx
n

n=0

is the generating function of the Fibonacci

numbers.

(b) From (ii) derive by partial fractiotks

(iv) g(x) I ]- ax I - bx] '

- IT
where a =.

I +
b

I

(c) Expand the two terms of the right-hand side

of (iv) in series, and equate coefficients of

955`.1,
0 ;
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like powers of x in the resulting series and

(iii) to get, finally,

nn
1

+ r5
2

17 )

n

(d) Check the formula for n = 0,1,2,3.

(e) Prove that f
n

is the integerclosestto /

and that f
n

is very nearly equal to this quantity

for large n.

(f) Show that f
100

3.5 x 1020

(g) Criticize the derivation of the formula for fn.

951141slia
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Chapter 14

DIFFERENTIAL EQUATIONS*

I. Numerical Solution.

In Section 9-2 we con idered some differential

equations with initial conditions, of the form

(I) yl = f(x,y), Oxo) = Yo.

For certain simple cases of the function f we were able

to find a solution of (I), that is, a function y(x)

satisfying the initial condition and such that

y/(x) = f(x,y(x))

for every x in some interval Fx
0'

x
V
1. In this chapter we

shall consider much more general cases of (I), discussina

whether they actually have solutions, and, if so, how to

determine these solutions either exactly or approximately.

To keep things simple at first we start off with an

equation we know all about, namely

(2) y' = ky, y(0) = I.

*Some of the material in this chapter is taken from
"Engineering Mathematics" by Block, Cranch, Hilton, and
Walker. Permission to use this material has been granted
by the copyright owner, Cornell University, but its publi-
cation in this form is not endorsed by the copyright owner
or the original authors.

Ail 1 7
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We have seen that the unique solution to this equation is

y = e
kx Suppose we did not know this and we wanted to

find the value of

y(xl) where xi = .1.

Since from (2) we can

find y/(0) we can

use the linear approx-

imation of y(x),

y(x) = y(0) + xyt(0),

to get

Figure 1-1

y(xl) = Y1

= y(0) + .1y1(0) = I + .1k.

In Figure I-I, y(xl) is the ordinate of A and Y1 the

ordinate of A
1

.

Now suppose we want y(x2), where x2 = 2x1. We could

of course take

y(x2) = I + .2k,

giving the point B2, but it seems better to start with

Al and take another step of x1. Thus:

..1 Off
958 u
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y(x2) = Y2 = Y1 + .1y1(Y1) = Y1 + .1kY1.

This gives us point B1. Notice that the line AIBI is

not tangent to the curve y(x), nor parallel to the

tangent to y(x) at A, but is tangent to the solution of

y' = ky that passes through AI. (Dotted line in Figure I-I).

The process can now be repeated to get Y3,Y4,...

corresponding to points CI,D1,... that approximate points

C,D,... on the true solution.

To investigate this process further it is convenient

to introduce some notation. We assume that x n+I
- x

n
= h

is constant, so that x
n

= x
0

+ nh = nh in our present

example. Then

(3) Y
n+I

= Y
n

+ hyl(Y
n

) = Y
n o+ hkY

n'
= I.

This equation gives a recursion formula for Yn. Written

in the form

Y
n+I

= (I + hk)Yn
'

Y
0

= I,

we see that Y
n

is multiplied by the constant (1 + hk) at

each step. Since its initial value is I we obviously have

Y
n

= (I + hk)
n

159 1009
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Now we can write

I nhk

=

co,

that

taking

[(I

we

h

Y
n

= (I + hk)
n

= (I + hk)

and by Problem 7(a) of Section 10-4,

1

+ hk)

can get'

small

lim (I + hk)
hk

e.
h1c4.0

Hence for a fixed x = nh, as h 0 and n

lim Y = e kx = y(x). Thus we are assured

as close an approximation as we wish, by

enough.

We shall show that this happy conclusion applies to

a very general class of equations of the form (I). Before

proving this, however, we shall examine these equations

from a geometric point of view.

960
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PROBLEMS

F. The error in using Yn as an approximation to y(x) is

E = e
kx

- (I + hk)
x/h

(a) Regarding the right-most term as a function of h

and using its linear approximation show that

I

E = Tbk-9 xy(x).

(b) The relative error, the ratio of the error to

the true value, is in many cases more significant

than the absolute error. Discuss the behavior of

the two types of error in this problem, particu-

larly as x increases with fixed h. The cases

k > 0 and k < 0 must be distingul,

2. Use the computer to determine E for various values

of k, x, and h, with kx = I. The value of (I + hk)
x/h

is best obtained by successive squaring, using h = x/2N.

Does the linear approimation seem to hold pretty well?

What happens for very small values of h?

961
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2. Graphical Solution.

We consider the differential equation

(I) y' = f(x,y),

assuming that the function f has enough continuity proper-

ties to make the following discussion meaningful.

At any point (x,y)

at which f(x,y) is de-

fined, (I) determines a

direction, or more pre-

cisely, a slope at the

point. The combinarion

of point and slope is

called a line element

and is usually repre-

sented by a point with

a short line segment

through it. Figure 2-1

shows three line elements.

Figure 2 -I

X

962 le 4)

Figure 2-2
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Any solution of (I) must be tangent to the line

element at each of its points (Figure 2-2); and con-

versely, if we can find a curve that is tangent to the

line element at each of its points then it determines

a solution of (I). This property can be used to get

some information about the solutions of (I).

To do this we first draw a large number of line

elements, as in Figure 2-3, for the equation y' = x -

This is somewhat of a chore if done by hand and is

most easily accomplished by first drawing isoclines,

curves along which the line elements have constant

direction. These are obviously the curves f(x,y) = m

for various values of m. One of these is shown dotted

in Figure 2-3.

A much pleasanter way to get the line 'element field

is to use a computer with a good graphical output. Here

it is easier to dispense with isoclines and Just plot a

large number of line eleMents on a rectangular grid.

963
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y' = x - yz

\ \\ \ \
....

-..\ \\ \
\

\ \\ \ ....\ -.\ --.. _ ..,\ \ --\ ....
-..\ --, f

\ t....
..4"
i

Figure 2-3

-111=1/2

With a sufficient number of fine elements one can

fairly easily sketch in solutions of the equation.

These give an idea of the general shape of the curves,

their behavior with regard to local extrema and inter-

vals of monotonicity, etc. In Figure 2-3 it is easy

to deduce that the solutions approach the parabola

x - y2 = 0 as x increases but what happens as x decreases

is not so obvious. In fact, each curve has a vertical

asymptote (Problem 2).

964
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This graphical approach is often useful in getting

an idea of the shape of a solution before starting an

elaborate analysis or computation to find it precisely.

Knowing what to expect ahead of time is both a guide in

the selection of a method of computation and a check on

any serious errors that might occur.

965 :41,_P7
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PROBLEMS

I. Use line elements to sketch several solutions of

each of the following equations. Make whatever

comments you can about different types of solution of

the same equation, local extrema, behavior for x

increasing and decreasing, etc. Note that all local

extrema occur on the isocline f(x,y) = 0.

(a) yl = x + y (d) y'

(b) y

(c) y

x (e) y

x

x2 + y2

1 5x + y
7-777

= -I (f) y' = x +
x

2. We wish to show that a solution of 11 = x - y2
dx

has an asymptote as x decreases.

(a) Setting z = -x, show that the above statement is

dythe same as showing that -- = z + y
2 has an

dz

asymptote as z increases.

dy
(b) Let y(z) be a solution of = z + y2 and w(z) of

dz

dw = w2, with initial condition y(a) = w(a) = b,
dz

a 0, b > 0. Give an argument showing that

y(z) > w(z) for all z > a.

966 1076
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(c) Solve for w(z), to get w(z) =
I

I

a +
b

- z

(d) Show that y(z) has an asymptote as z increases.

3. Consider y' = xy + I for x > 0, and the solutions

starting at (0,b) for various negative values of b. Let C be

the curve xy = -I in the fourth quadrant.

(a) Show that a solution that crosses C eventually

goes down rapidly in the fourth quadrant..

(b) Show that a solution that crosses the x-axis

eventually goes up rapidly in the first quadrant.

(c) Show that there must be at least one curve that

crosses neither the x-axis nor the curve C.

[Hint. Use a bisection process.]

(d) We shall show later (Section 8, Problem 9) that

there is exactly one such curve, through a point

(0
'
b
0
). Locate b0 as well as you can.
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3. The Fundamental Theorem.

To discuss the solution of

(I) = f(x,y), y(x0) = y0

we must first consider

some properties of the

function f. Suppose that

f is defined in some open

region R in the xy-plane.

The adjective "open" means

that the points on the

boundary are not regarded

as points of R. For

example, R might consist

of the points strictly inside a circle, or inside a

rectangle.

Figure 3-1

f is continuous in R if, given any point (x0,y0) in R

and any c > 0 there is a 6 > 0 such that If(x,y) - f(x0,y0)I

whenever (x,y) is in R and Ix - x0I < 6 and ly - y0I < 6.

This is an obvious generalization of the definition of

continuity for a function of one variable. Its geometrical

968
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significance is shown in Figure 3 -I: Given a square of

side 26 with center at (x0,y0), the function values at

the center and at any point inside the square will

differ by less than c.

f is Lipschitzian in y (see Section 3-10) in the

region R if there is a number L such that

If(xoy f(x,Y2)I < y2I

for all pairs of points (x,y1),(x,y2) in R. We usually

prove that f is Lipschitzian by showing that IfT(x,y)1 < L

in R, where f/(x,y) designates the derivative of f with

respect to y regarding x as a constant; i.e.

(x y) = I'fY
f(x,y + h) - f(x,y)

h
/m

11-04)

Proof is left to the reader. (Problem I).

We can now state the fundamental existence and

uniqueness theorem for differential equations.

Theorem I. If f is continuous in a region P, then for any

(x
0'

y
0

) in R there is an H > 0 such that (I) has a solution

y(x) for Ix - x
0

< H. If in addition, f(x,y) is Lipschitzian

in y i the region R then the solution is unique.

965
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The proof of this theorem is well beyond the level

of this text.

Example I. For the equation

(2) y' = x + y, y(0) = I

we can take R as the whole plane, since f(x,y) = x + y

is continuous for all values of x and y, and ft(x,y) = I

is certainly bounded.

The solution is

y(x) = 2ex -

which extends indef-

initely in both

directions.' Hence in

this cas3 we can tak3

H as large as we

p lease.

Y= ZexX-1

Example 2. Consider the equation

(3) y
4y2 - 6y

3x

Figure 3-2
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The function is defined and continuous in each of the

regions x > 0, -co < y < co and x < 0, -03 < y < co. Since

our initial point (1,1) lies in the former region we use

, 8y
3x
- 6

it. is bounded if lyi is bounded above and

x is bounded away from zero. So we must take P of the

form

a < x < ce, I YI < M,

for some a > 0 and some M > 0.

The solution is

3
Y

2 + x2

curve 0 in Figure 3-3. The

curve goes indefinitely to

the right but must stop when

it hits the boundary of R at

x = a. Hence H = I - a,

where a can be arbitrarily

small.

If we chahge the initial

condition to y(I) = 3 we get

curve C) with equation

Y =
3

2 - x2

I 911

0 a

b,-2)

Figure 3-3
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This behaves quite differently, having an asymptote at

x = T', and hence having H = 17 - I.

Finally, curve 0

96

64 - 7x2

with initial condition y(4) = -2, has an asymptote on

the left, at x = 8/1 = 3, and so H = 4 - 8/7 = I.

Example 3. (See Problem 14 of Section 9-2).

(4) = 3y
2/3

, y(0) = 0.

Here f is continuous for all x and y but f' = 2y-1/3 is

unbounded near the x-axis. The fundamental theorem

says that (4) has a

solution but it may

not be unique. In

fact, any curve of

the type shown in

Figure 3-4 is a solu-

tion of y' = 3y 2/3 .

Thus there is an infi-

nite number of such

curves through any

point on the x-axis.

972
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PROBLEMS

I. (a) Use the Mean Value Theorem to prove that if a

function F has the property

L < Fl(y) < L2
2

for all y in [a,b], then for any yl and y2 in

ra,b]

F(y1) - F(y2) = k(y, y2),

with L
1

< k < L
2

.

(b) Prove that if 1F1(y)1 < L for all y ra,b-1 then

1F(y1) - F(y2)1 < L lyi - y21

for all yi, y2 in ra,b].

2. Investigate carefully the solutions of y' = -267.

3. Consider the modification of Example 2:

f(x,y)

4y2 6y

if x = O.

3:

=

0

973
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(a) Show that f is not continuous at any point

(O,c).

(b) Show that y' = f(x,y) has solutions over

intervals (a,b) that include the value x = 0.

(c) Show that there are no solutions through (O,c)

unless c = 3/2 or 0. For c = 3/2 there is an

infinite number of solutions, for c = 0 there

is one.

(d) Compare the above behavior with that of

y' = g(x,y) when

NZ- if x # 0,
x

g(x,y) =

0 if x = 0.
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4. Euler's Numerical Method.

The numerical method that was introduced in Section I

is known as Euler's method of solving differential equations.

Given the equation with initial condition

y' = f(x,y), f(x0) = y0,

we choose a number h, generally small and positive, and

define numbers Y0, Y1, Y2, Y by
0' 1' 2 N

(2) Y
0

= y0, Y
n+1

= Y
n

+ hf(xn,Yn), n = 0, I, ISO , N-1,

where x
n

= x
0

+ nh, The special case of Section I leads us

to hope that in the general case Yn will be an approximation

to y(xn).

Example 1. y =
4y2 - 6y v(1) = I.

3x
,

This case has been examined in Example 2 of the last section,

so we know what to expect.

Table 4 -I gives the comput-

ations for h = .5, N = 6,

and Figure 4-1 shows the

same data graphically.

Even with such a large

value of h the Y
n

are not

x Y f(x,Y) y(x)

1.0 1.000 -.667 1.000

1.5 .667 -.494 .706

2.0 .420 -.302 .500
2.5 .269 -.177 .364

3.0 .181 -.106 .273
3.5 .128 -.067 .211

4.0 .095 .167

Table 4 -I

hopelessly bad approximations to the y(xn). Cutting down

975
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the size of h improves the approximation considerably,

as one cen see by comparing the values at x = 2 from

Tables 4 -I and 4-2.

Now consider the same

equation with'the initial

condition y(I) = 3. We saw

in the earlier example that

this has an asymptote at

x = 1.414 and hence

the solution cannot be con-
1 2

tinued beyond this point.

Nevertheless, the numer-

y

Ica! "solutie,-", as Table 4-3

shows, goes riqht on past IT

with no clear indication

that its results are mean-

ingless. The rather

sudden jump in the value

of Y at x = 1.5 does indi-

cate possible trouble

and suggests that we back

up a bit and try a smaller

value of h. But the computed value at x = 1.4 looks perfectly

good even though it is hopelessly far off.

3

Figure 4-1

4

x r Ttx,yi Y

1.0 1.000 -.667 1.000

1.2 .867 -.578 .872

1.4 .751 -.535 .7:8

1.6 .644 -.455 .65-z

1.8 .553 -.388 .573

2.0 .475 .500

Table 4-2

916
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This example shows the

need for two things: first,

a machine program to carry

out the arithmetic involved

in getting a numerical

solution to any useful

accuracy; and secondly, an

error analysis that will tell

us what value of h to use to get a given accuracy. We leave

the first of these to the ,reader (Problems 2 & 3) and

proceed to discuss the second.

x Y f(x,y) y(x)

.0 3.00 6.00 3.00

.1 3.60 9.16 3.80

.2 4.52 15.16 5.35

.3 6.04 28.12 9.68

1.4 8.85 61.66 75.00

1.5 15.02

Table 4-3

We assume that (I) satisfies the conditions of the

Fundamental Theorem and has a unique solution y(x) for

xo < x < N. We designate y(xn) by yn. The error in

the approximate solution given by (2) is then En = y
n

- Yn.

Now by the Extended Mean Value Theorem,

y(xn+1) = y(xn) + (xn+, - xn)y'(xn) + 4,-(xn+, - xn)2y"(0,

where x
n

< < x
n+I

. This can be rewritten as

,

(3) yn+, = yn + hf(xn,yn) + e
2 y1(0.

971
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Subtract from this the recursion formula

(4) yn+, = Yn + hf(xn,Yn),

and we get

(5) E
n+1

= E
n
+ hEf(x

n
,y

n
) - f(x

n
,Y

n
)] + 4.h2y"(0.

The quantity Tn = h2y"(0 is called the truncation

error, the error arising by cutting off all terms of (3)

except those of first degree in h. To handle the ex-

pression in brackets we make the further assumption that

all (x
n
,Y

n
) lie in the region R, Then by the Lipschitz

condition,

f(x
n
,y

n
) - f(x

n
,Y

n
) = K

n
(y

n
- Yn) = KnEn,

where IK
n

I < L, the Lipschitz constant. Then (5) becomes

(6) E
n+1

= Cl + hK
n
)E

n
+ T

n
.

Now, however, we must remember that we really do not

compute Yni., exactly from (4), because of roundoff ,errors
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in the computation. That is, we really have

Y
n+1

= Y
n
+ hf(x

n'
Y
n

) + R
n'

where R
n

is some unknown roundoff error, about which

we can only say that IR
n

I < R for some small number R

depending on the cor)lexity of the function f, the word-

length of the machine, etc. With this factor in the

analysis (6) is replaced by

(7) E
n+1

= (1 + hK
n
)E

n
+ Tn - Rn.

To get bounds for En from (7) we must have bounds for

the quantities Kn,Tn, and Pn. We have already seen that

IR
n

I < R. Assume that for all x in [x
0'

x
N
] we have

ly"(x)I < M; then ITnI < For Kn we use only an upper

bound, Kn < K. We take care of the lower bound by assumina

that h is small enough to make 1 + hKn positive. (In fact, if

IhKnJ > I
the approximation is too poor to be of-any value.)

Under these conditions,

(8) 'En' < (;-"1+ 2.1 p + [lion -
hi I,.

The proof, which is not difficult but rather lonp, is

given at the end of this section. The case K = 0 can be

handled by takina limits as K -4- 0 (see Problem 1).

0 979
t- 0.
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The bracketed expression in (8) can be handled as in

Section I. For small values of hK we have approximately

(9) (I + hK)
N

= e
NhK

= e
Kx

,

if x = Nh. We can therefore draw the following conclusions

from (8) and (9) :

I. If there is no roundoff, i.e. i n the case of exact

mathematical analysis, limjE
N h.+

1 = 0 and li0 m Y
N

= y(x).
h-0.0

This proves the convergence of Euler's method under the

conditions we have assumed.

2. lf roundoff is present then the upper bound for

IE
n

becomes infinite as h 0. This does not mean that

IENI necessarily becomes very large but it admits the

possibility. A more exact analysis, using equation (7)

and the statistical distribution of the R
n

, shows that

IENI does indeed become arbitrarily large as h 0.

3. For fixed h and variable x, the bound on IENI

grows like eKx. Here again, this does not mean that IENI

grows this fast, but if the K
n

remain fairly close to K

the growth is of this order of magnitude.
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4. Roundoff and truncation error are of about equal

significance when h2 = 2R/M. For a typical situation we

might have R = M = 8, in which case the critical

value of h is 5 x 10-8. Since this would require twenty

million steps to go from x0 to x0 + 1 one is hardly

likely ever to use so small a value of h. On the other

hand, for R = 108, M = .5, the critical value is 2 x 10-4.

This implies only 5000 steps per unit change in x and gives

..(e1<x
I) x 10-4.

For K = 2, x = 1 we getlEril < 3.1 x 10-4, which is only

3-place accuracy. If more accuracy is needed and there is

no way of decreasing R - by going to another machine or

by using multiple precision programming - Euler's method

must be abandoned in favor of one more complicated but

more accurate. There are literally dozens of such methods

and more are invented every year. Any good book on

Numerical Analysis will discuss several of the most

important ones.

Example 2. y' = x - y2, y(0) = 0, y(2) = ?

This is the equation discussed graphically in Section 2.

We see from the discussion and Figure 2-3 that y(x) is

an increasing function whose value at x = 2 is roughly

between I and 1.4. To oet the value of M we need to know

something about y"(x). y" is obtained by differentiating

981
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the differential equation with respect to x, thus:

y" = I - 2yy' = I - 2y(x - y2).

y"(0) = I. Since y is increasing, y' > 0 and y > 0; hence

yl' decreases. A few tria! points taken from Figure 2-3

are enough to convince one that y" never gets close to

- I for x in the range [0,2], and so we can take M = I.

To get a value for K we use the result of Problem 1(a)

of Section 3. Since f'(x,y) = -2y is bounded by

- 2.8 and 0, we see that the values of Kn are similarly

bounded and so we can take K = 0. Then Problem I of this

section gives as the bound on lEnl,

IE n
< n(1 h2M + R) = x( +7 TT

For x = 2 the error bound is then simply h, plus the

roundoff contribution.

In Table 4-4, columns YI and Y2 give the values of Y

at corresponding values of x, for h = .1 and h = .0005

respectively. By our results above, Y2 should be accurate

to 3D; hence the next column, giving the differences of Y1

and Y2, is an estimate of the errors in Yl.

S2 Q;;
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(The machine which produced this table has R < 10
-12

so the roundoff error is negligible.)

APPPOxiWATI.L. SOLUTIONS )F 0Y/D! =X-.Y*Y

Y1

H=.1

Yd
ri=101c,

Y2-Y1 Y3 Y3-17

0 0 0 s)onnoo ') 0a00l0 'J loo 0 000;00 0 000100

.1 0 000001 ,0497, .)Ji .00497 .01)0012

_2 -01n110 .1,4914 .110 ,J194.i9

.3 ..o.2991 .14.48(15 .115 .14484?
.000029
.00007

.4 .10:).9000 .n/9-.195 .01.4 .117 444

.5 .0qq,i41 .1,23344 .124 .123403
.00nn48
.0001q9

.6 .14,'.iq51 .1/6179 .121 .L7b147 .01)nnA7

.7 .206344 .?.3.1794 .030 .P3664 .100074

.s .7721-30 .31)445 .13? .:04cP1 -000078

.9 .34401h1 .377 7)-0 .133 .377A59 .0001)714

1 . 0 . 4 2 2 0? .4'i5392- lIl_ 4!76.468 r1 fio_76

101 .50492, .h3-17M6 .1J31 ip,335860

...0

.000072

1.? .-)A,4431 ,6174A5 .123 .017550 ,n30o6F1

1.3 b74?;i01 on99090 .)24 .99145 .000006
1.4 .7S9lb'l .7/9371 .120 .779417 .00nn46

T.'', .64t534 .1tt7321 .11h seS71S7 .000016

I.') .92071.1 .'432175 6111 .4322n1 .009025

1.7 .995444 1.00341)s .007 1.003435 .000017

1.8 1.0667S4 1.0707 65 .104 107.a/.7.5_ .onanit9

1.1 1.13?q57 1.134130 .101 1.1..34133 .000003

2.0 1.1q4L:198 1.1M10 -.001 1,I9157g - .000002

TAHLF 4-4

Actually the error i.n Y1 at x = 2. is very small.

On the other hand, the error at x = I, .033, is in good

agreement with the computed bound, which is h/2 = .05.

The cause of the decrease beginning at about x = 1.1 is

the change in the curvature of the solution near this

983
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point. (Set. Figure 4-2 and Problem 7 of Section 10 -I.)

At first the curve is convex, and Y
I

underestimates, as

in Figure 4 -I.

hen the curve

becomes concave

and Y
1

overesti-

mates, thereby

aradually can-

celling the pre-

vious errors.

From this point

on the curve is

Flex (1.19 , 0.61

Figure 4-2

fairly flat, i.e. M is small, and the error build-up in Y

will be less than the above estimate.

It is important to notice that the discussion in the

above example is not mathematically rigorous. We have

not proved that y(2) lies between 1.4 and I, nor that -I

is a lower bound of y". This can be done in this simple

example but in general the difficulties would be too al-eat

to be justified. Instead we usually proceed as we do for

Simpson rule integration; we get a solution for a value

of h hopefully small enough, repeat the process with a

984 10.
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value of h half as big, and compare the results. This

was done in columns Y2 and Y3 of Table 4 -I. The

difference, tabulated in the next column, indicate that

the values are almost surely accurate to 3 places.

Proof of (8). We start with

(7) E
n+I

= (I + hK
n
)E

n
+ Tn - R

n'

where

(10)
I 2

0 < I + hK
n

I + hK, ITnI < 741 M, IR
n

<I R,

and E0 = 0 since Yo = y0. Consider quantities Fn defined

by the recursion formula

(II) F
n+1

= (I + hK)F
n 2

+ 1h2M + R, F0 = 0.

It is easy to see that if lEn1 < Fn then lEn+11 Fn4.1.

For, from (7) and (10),

IE n+I
1 < 11 + hK

n
11E

n
1 + 1Tn1 + 1Rnl

< (I + hK)IE
n

I + 4.h2M + P

< (I + hK)F
n

+ ..h2M + R

= F
n+I.

915
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Since 1E01 < F
0

it follows that

(12) 1E 1 < F
n n

for all n.

To get (8) we have to solve (II). This equation is

of the form

(13) Fn = aF
n

+ b,

where a and b are constants. We can simplify it still

further by adding a suitable constant to Fn, i.e. let

Gn = Fn + c. In terms of G
n'

(13) becomes

G
n*I

= aGn - ac + b + c G0 = c.

Taking c = b/(a - I) leaves

G
n+I

= aGn, G
0

= b/(a - I).

Now, obviously,

G
I

= aG0, G
2

= aG
I

= a2G0, , G
n

= an G
0'

and so the solution of (13) is

F = an
n a - I a - I

986 2(

b

a I

(a
n
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Finally, putting

a = I + hK, b = 4.112M + R,

gives as the solution of (II),

Fn
(
2K
hM

hK
R )

[(I + hiOn - I]

(8) then follows from (12).

987
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PROBLEMS

I. (a) Show that taking limits in (8) as K 0 gives

lEn1 < (41+ ;1=)nh.

(b) For x = Nh discuss IENI as h goes to zero with

fixed x, and as x increases with fixed h.

2. (a) Write a flow diagram for the recursion process

Y
n+I

= Y
n

+ hf(xn,Yn),

xn+I = xn + h,

with initial values Yo = y0, x0. Output the

successive values of x and Y.

(b) Write a program from your flow diagram.

(c) Test your program with the two cases of Example I.

3. Modify your p-rogram in Problem 2 to output x and Y

at every M steps rather than at every step, This

enables you to use very small values of h without

unduly depleting the forests of America.

90
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4. Use your program in Problem 2 or 3 to make reasonable

tabulations and graphs of the solutions of the follow-

ing equations over the given integrals. Piscuss any

feature of the solution that seems unusual.

(a) yl
5x + y
x - 5y ,

y(0) =

(i) for 0 < x < I, (ii) for 0 < x < 1.5.

(Compare with Section 2, Problem 1(e)).

(b) y
,/y2-
X2 -

, y(0) = 2,

(i) for -.9 < x < .5. [Use neoative values of h

for x < 0.i

(ii) for 0 < x < .9.

(Compare with Section 7, Example 2).

dy
(c) = 2q(t) - -/7 , y(0) = 0, 0 < t < 1000,

lu

g( 1- ) =

1 - cos .2-7)- if 2n < < 2n+I

0 if 2n+I < < 2n+2

(Compare with Section 5, Example I).

, n =

5. Use your program to solve Problem 3(d) of Se6tion 2.

989
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6. (a) Use Euler's method with h = .2 to estimate

y(1) if

y' = xy + 1, y(0) = -1.

Tabulate x,y, and y', and carry only two

decimal places in your calculations.

(b) Use your values of x,y,y' to comnute y",

and estimate values for M, K, and P.

(c) Determine the possible error in your approx-

imation to y(1).

7. (a) Solve y' = xy + I, y(0) = -I, by exoressinp y

as a Maclaurin series, as illustrated in

Section 13-5.

(b) Comoute y(1) to two decimal places. Ans. -0.24

(c) Use the result of (b) to net the actual error

in 5(a) to two Places, and compare with the

estimated possible error in 5(c). Is the latter

a reasonable bound, much too pessimistic, or

not a bound at all?
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8. (a) Is Euler's method the best numerical way to

find y(x) when oiven

y' = f(x), y(x3) = yo?

Describe a better one.

(b) Flow chart and brooram the best method you can

thir of.

(c) Solve

y' = + x 3
, y(I) = 2,

to 5D accuracy for x = 1(.1)5
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5. Applications.

A differential equation is apt to arise in a

mathematical model of almost any problem involving

continuously changing quantities. As is the case with

all applications of mathematics the solution of such a

problem involves the three steps of setting up the model,

solving the equation, and interpretting the results.

The rest of this chapter treats step 2. In this section

we are mainly concerned with step I, more Particularly

with the last half of step I. The formulation of a model

involves first the acceptance of some simplifying approxi-

mations to the true situation, and then the expression of

the simplified picture in mathematical terms.

The examples and problems of Section 9-2 illustrate

the two most common ways in which a differential equation

is set up as a model of the approximation of a physical

sys+em. In one of these (Examples 3 and 4 and Problem 5

to 12) the derivative of a quantity enters directly,

usually as a slope or a rate of chance, and the differ-

ential equation results from a relation between this

derivative, the quantity itself, and the independent

variable. Motion problems, involving distance, velocity,

and acceleration, are typical of this mode of formulation.

992



www.manaraa.com



www.manaraa.com

The other method , illustrated by Examples 1 and 2

of Section 9-2, makes no direct use of derivatives but

analyzes the problem in terms of small changes of the

variable, attempting so to formulate the situation

that by letting these changes approach zero an equation

involving one or more derivatives appears. This technique

is more general than the former but is also less direct

and often tricky to ilandle.

both methods.

We shall give examples of

In some of the examples and problems, notably Example 2

and its related problems, we consider the realism of the

approximations made in step I, by interpretting the

solution of the differential equation back into physical

terms. Results that are physically impossible indicate

the need of changes in the simplifying assumptions.

Example i. The Allukaw river, like the Nile, has a strongly,...
seasonal flow, approximated by

f(t) = 108(1 + sin ) cu ft/day ,

5 8'

t being measured in days from January I. To level off the

flow we build a dam 200 ft high, holding 2 x 10" cu ft,

993
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to impovid the water. The

water runs out of an open-

ing at the base of the dam

he rate of IOW

t/day, y being the

height of water in the dam.

If we imagine the reservoir
Figure 5-1

to behave simply like a tank, as in Figure 5-1, then the

area of the base is 2 x 1010/200 = 108 sq ft, and the

volume of water in it 108y. So

or

.27(10 y =8 ) 108(1 + sin ) - 107V7

177
t+ sin

175"

A machine solution, using Euler's method with h = I but

printing only every 20 steps, gives the curves in Figure 5-2.,

It was assumed that the reservoir was empty on January I. No

that the annual variation in flow has been reduced from

2 x 108 to .3 x 108.
ul

+> Flow in F!ow out Water level4- 200

0
co

Time in Years

994
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Example 2. R rabbits are running around in Australia. We

make the following approximations regarding-the change in R:

(a) The rabbits are spread uniformly throughout

Australia;

(b) When two rabbits of opposite sex meet they

produce r more rabbits;

(c) The average lifetime of a rabbit is b years.

From (a) the chance of a rabbit meeting a member of

the opposite sex in a given time is proportional to R.

Hence the total number of such meetings in a given time

is proportional to R2. By (b) the rate of increase by

births is proportional to R2. By (c), 1/b of the rabbits

die each year. Hence, measuring time in years,

dR = aR2 -
dt

.

The solution of this equation is analyzed in Problem I.

This is of course a very crude mnatel since our

assumptions are grossly oversimplified. For one thing,

we have neglected the food supply - If there are too

many rabbits some of them starve. We can include this

point by making b a decreasing +unction of P, for instance

b = c(I - R/R
M

)

'
where R is an upper bourd to the number

995
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of rabbits that could possibly live in Australia. If

we want to get fancy we can let Rm be a function of t,

to take care of climatic variation.

Example 3. A long rope of vari-

able cross - section hangs verti-

cally and supports a weight W

at its lower end. ( Figure 5-3).

At distance x from this end let

A(x) be the area of cross -sec'

of the rope, ofx) the density

of the material, and S(x) tie

stress in the ran' in force per

unit area. Consicer the force;

acting on Ole portion of the

rope between x and x + Ax.

(Figure 5-4) . Pulling onward

at the top the orce

S(x ex)vx

of the stress at hit: point.

Pulling downward is S(x)A(r)

plus the weight of the pi, : oi

996 To
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S (X) A (Y.)
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rope. This weight w is bounded,

ap(xl)A(x2)Ax < w < pp(x3)A(x4)Ax,

where P(x
I '

y
2

) A( ) and P(x ) A(x
4

) are the minima and

the maxima of the density and the area functions in the

interval [x,x + Ax]. Assuming that the functions 0

and A are continuous, it follows that there are x5 and x6

in [xpx + Ax] suaIl that

w = gp(x5)A(x6).

We must therefore have

S(x + Ax)A(x + Ax) = S(x)A(x) + c.,0(x5)A(x6).

Dividing by Ax and letting Ax .4 0 dives

or

(I)

S(x Ax)A(x Ax) - S(x)A(x)
lim ,n4 r410 gp(x5)A(x6)

-4-Ax0 Ax

d(S(x)A(x)) pP(x)A(x).
dx

The initial condition is T(0)A(0) = W.

(a) If A is constant the equation becomes

S' = gp(x),

AS = W + f AaP(t)dt.
0 -

997
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Thus the tension AS merely builds up with the weight

of the rope below that ooint.

(b) For constant p, how should A vary so that S

is constant? This is the "most economical" design,

since S can be kept just below the breaking point. We

get

SA' = gpA,

which integrates to

W
A = e

x/k
k

s

9P

For steel, k = 15,000 ft., so a vertical cable three

miles long would have to have a cross-sectional are,. 2.7

times as large at the top as at the bottom.

(c) Suppose the rope is

elastic, so that it stretches

under tension. Assume that p

is constant throughout the

stret,:hing and that A has the

constant value A
0

in the un-

stretched state. The two states

of a portion of the rope are

sh.:Agn in Figure 5-5. Hooke's
Figure 5-5

SA

SA
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Law says that

h = cHSA

where c is a constant. Since we are assumino that the

density is not changed, the volume must be the same in

the two states; that is,

A
o
H = A(H + h) = A(H + cHSA)

c;iiihich gives

(2) AO = A(1 + cSA).

To combine this with (I) put it in the form

A

cSA =
A
0

Then (I) gives

or

-- A' = capA,
A2

cgp

A3 AO

In equations involving physical quantities it is

often convenient to work with "dimensionless" variables,

defined as the quotient of two variables of the same

999 10419
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physical dimensions. In the present case let us intro-

duce the variable y = A/A0. Replacing A in the above

equation by A0y, we pet

(3) -Y-3 Y / = k, k = capA0.

Separ'ating variables and integrating gives

or

y
-2 - y(0)

-2 = 2kx,

y (y(0)
-2 + 2kX)

-1/2

To aet A) we combine (2) with W = A(0)5(0). This

gives

A(0)
A
0

I + r''

So our final solution is

A = A
0
(b2 + 2kx)-I/2

where b = I + cW and k = cg0A0.

.Example 4. Newton's second law of motion says that the

rate of increase of momentum of any bre is equal to the

fo'ce actina on the body. Consider a :,cket whose mass

and velocity at time t are M(t) and V(t), acted on by a

105-0
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force F (such as gravity,

air resistance, ect.). At

time t the momentum of the

rocket Is M(t)V(t). At

time t + At this "body" has

separated into two parts,

the rocket at time t + At

ano the portion of the fuel

that was burned and ejected

as gas in the interval At.

The mass of the exhaust gas is

M(t) - M(t + At) = - AM

(a) (b)

Figure 5-6

and its velocitv is -(V e
- V), where V

e
is the "exhaust

velocity", a constant depending on the design of the

rocket and the kind of fuel. More precisely, the momen-

tum of the exhaust gas is bounded,

-(Ve - V(1.1)) < Mom. < -(Ve - V(t2)),

where t
1

and t
2
are values of t in the interval [t ,t + Atl

at which V(t) has minimum and maximum values. Since V is

continuous there is a t
3

in this interval such that the

momentum of the exhaust gas is -(Ve - V(t3))AM.

1170
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then

The increase of momentum in the interval At is

M(t + At)V(t + At) - (V
e
- V(t3))M - M(t)V(t).

To get the rate of change of momentum we divide by At

and let At 0; thus

lim
1 V(t + At)V(t - M(t)V(t) A(-M)]

(V
e

V(t
3

))
1t 4-C) At At

dM
= M(t)V(t)) + (V - V(t))

Ti:. dt '

since t
3

4- t as At 0. By Newton's law we then have

MV' + M'V + V
e
M' - VW = F,

or

(4) MV' = -V
e
r, + F.

There are several interestina special cases of this

rocket equation.

(a) F = 0, i.e. motion in free space. We can

write (4) as

M
dv dM

=
dl

-v e dt '
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or

dM dV
V -V

e

Assuming M = V
0
when V = 0 we get by integrating,

or

log M - lop Mo =

M

V/V
e

= e

V
e

foo/M is the "mass ratio", the ratio of the initial to

the final mass required to attain velocity V. For

example, if Ve = 10,000 ft/sec and V = 36,000 ft/sec,

the velocity needed to escape from earth's gravity,

then M/M
0

= 37. In other words about 97% of the initial

mass must consist of fuel. This large mass ratio is the

reason why rockets cost so much.

(b) If the fuel is burned at a constant rate then

M = M0 ct. The equation becomes

V

cV
e

F
_

M0 - ct

For a rocket moving through the air at subsonic speed the

resistance F is of the form - kV2. The resulting equation is

cV
e

- kV2
V M

o
ct

Some conclusions that can be drawn in this case are treated

in Problem 4.

1003
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PROBLEMS

I. (a) Solve the rabbit equation

dR = aR2 -
dt b '

with inital condition R(0) = R
0'

by the method

of separation of variables introduced in

Section 9-2.

Ans. .R = R
o

[k - (k - 1)e
t/b

k = abR
o.

(b) Show that if R
0 ab

< the rabbits die off, but

if R0 >
k they become infintely numerous in a

finite time.

2. Using the computer, investigate the suggested equation

dR
dt a

R2

(a) Using the values

c(I - R /RM)

RM = 3 x 108 = 100/sq mile;

c = 5, ati average life of 5 years;

a = 10-4, adjusted to try to get ;: reasonable

answer;

R
0

= 104;

draw a graph of the growth for 100 years.
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(b) Show that at the equilibrium situation the

averagP life span of a rabbit, as niven by

b = c(1 - R /RM), is ridiculously small. To

avoid this we must replace a by a function

that is fairly constant until b gets down to,

say, 1/2, and then decreases rapidly as b goes

to zero. Try constructing such functions and

run experimental trials with various para-

meters to see If you can get a realistic popu-

lation growth.

3. A coiled spring (see

figure) behaves like

elastic rope with

the following changes:

(i) The quantity

SA is replaced by the

tension T;

(ii) AP is re-

placed by the linear

density A, mass per

unit length.

X
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Equations (I) and (2) then become

T' = gX,

A0 = all + CT).

(a) Putting y = A/X0 show that these give tho same

equation (3), with suitable definition of k,

and the same value of y(0).

(b) Suppose z is the length

of an unstretched spring

that stretches into the Tz

piece of length x in the

stretched condition. Since mass is preserved

in the stretching,

A0z = f A(u)du.
0

Using the solution of (3), show that this gives

k
X = 7z

2 + bz.

1016
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This is well illustrated with a Slinky, using

w = 0, k is large enough, due to a large value of c

to spread the coil out nicely and give the effect

pictured in the previous figure.

4. (a) Separate variables in the equation

cV
e

- kV2
VI

M
0

- ct

of Example 3(b) and solve with initial condition

V(0) = 0 to get

(5) V
be
n-

I +

(I

ct)113

0

cty0

(b) Letting r be the mass ratio

r

MO MO

M Mo - ct '

77eb = 2

reduce the above equation to the form

V= bc 2

rb + I

and sketch the graph of V as a function of r.

1017
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5. If we neglect air resistance a rocket ascending

vertically is acted on by a force r =

(a) Set up the equation of motion if M = MO - ct,

as in Example 3(b).

(b) Integrate the equation, assuming V(0) = 0.

Ans. V = -Ve log (tI - 17,) - gt.

(c) Integrate s' = V to get the height s at time t.

0
(d) For a given mass ratio r = -Fr we have

-
0

m

t =
M

= (r - I). Show that this gives

cM
V = V

e
log r - - 1),

=
V
e
M ,m2
(r - I - log r) - r - 1)2.

c 2c2

With this velocity the rocket will coast to an

2vg
additional height of Show that the total

2

height attained is

S

(V
e

log r)2 V
e
M

2g c
(r log r - r + I)

Show that r log r - r + I is positive for r > I and hence

that the maximum S is thus obtained by making c as large

as possible. What are some limiting factors on the value o1

10118 40ij8



www.manaraa.com

6. A tank contains V G gal /min

gallons of salt solu-

tion. G gal/min of a
100 gal/min

solution containing

.5 lb/gal is pumped

in, and 100 gal/min of

the solution in the

tank is pumped out. The solution in the tank is

stirred constantly and may be considered to be of

uniform concentration. At the beginning of the process

the tank contains 10,000 gal of fresh water. We want

to know the concentration of the solution in the tank

after t minutes.

(a) Assume G is constant, G = 100 gal/min.

[Hint. Set up a differential equation for S, the

amount of salt in the tank.] Ans. C = T(1 -
-t/100)

(b) Assume G fluctuates as civen by

G = 100 + 50 cos
100

[Hint. First find V as a function of t. The

equation for S will have to be integrated numeri-

cally.]

Partial answer: V = 5000(2 + sin t/I00).

1 069
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(c) In (b) replace cos t/I00 by the step function,

.707

0

-.707

t

having the same root mean square, and solve the

problem. Considering that either of these two

cases might be used as an approximation to an

oscillating input, has one of them any advantages

over the other?

(d) Run solutions with .707 replaced by other con-

stants and see if there is one that gives better

agreement with the sine curve.

7, Two gasses combine to form a solid,

X + Y -+ Z.

(a) Give an argument like that in Example 2 to show

that

dx = -axy,

1010 1060
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where x and y are the concentrations of X

and Y, and a is a constant. State any assump-

tions you make.

(b) Give an argument to show that x - y is a con-

scant p. By interchanging the roles of x and

if necessary, we can assume p > 0.

(c) Solve the differential equation.

Partial answer: x =
I - (yo/ye-apt

`1,

if p > 0.

8. In Problem 7 suppose that z is also a gas, which can

spontaneously decompose into X + Y.

.;a) Derive an equation

dx
dt

= -axy + bz.

(b) Show that, with x - y = p, as before, we also

have x + z = q.

(c) Reduce the differential equation to

dx

x2 + (p + r) x - rq
-a dt, r = b/a.

The quadratic polynomial in x must have one

positive and one negative root. (Why?) Let a

1011
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and -a be the roots and solve for x.

-Yt
x - a

Ans. x =
8ke

P Y a(a + 8), k
= xo

0

1 - keYt
+ 8

9. (a) The dynamic systems in Problems 7 and 8 approach

"steady states" as t + co. Show that the steady

state can be obtained directly from the differ-

ential equation by settina This is
dt

characteristic of steady states.

(b) Find the steady states of the simple rabbit

equation in Example 2. Is a steady state

necessarily one approached as t + co? Discuss

the notion of "stable" and "unstable" steady states.

(c) For the second rabbit equation,

R' = aR2
R

c(I - R/R ) '

show that the graph

of R' versus R has

the shape shown.

Hence show that for 1 R
$4 S2 ARM

S
1

< R0 < RM the popu-

lation will approach

the steady state

1012 1062
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R = S
2'

but for 0 < R
0

< S
I

it will approach

zero. What are the steady states, and which

ones are stable?

M. Newton's law of cooling says that the transfer of

heat from a body at temperature 0 to its surround-

ings at temperature Os is proportional to e Os.

If we assume the temperature of a body is uniform

throughout and that the heat content is proportional

to the temperature, this gives the equation

dO
dt

= -k(El - Os)

The equation holds reaardless of the sign of 0 - Os.

(a) A pie is taken from an oven at a temperature

of 350°F a set to cool in an atmosphere of

70°. In 45 minutes it is barely eatable, say

150
o When will it reach 90

o
? Ans. 94.8 min.

(b) An identical pie made at the same time is set in

the draft of an oscillating fan which has the

effect of multiplying k by a factor of 2 + cos t/2.

When does this pie reach 90°? Ans. 48.7 min.

t 1013
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H. A body subject to Newton's law of cooling contains

a small amount of radioactive material, which adds

heat to the body at a constant rate. Show that this

is equivalent to a non-radioactive body in a higher

surrounding temperature.

12. Over a series of days the air temperature is approx-

imately

0
s

= 75 + 15 sin 2wt.

A closed car standing in the shade has a cooling

coefficient of k = 2. Assuming that the car's tem-

perature is 75° at t = 0, graph its temperature over

a period of four days.

13. Consider a vertical column of atmosphere of I sq ft.

cross-section. At height x above the ground let

p(x) be the density and p(x) the pressure.

(a) Explain why

p(x) = p(x + 1x)

op(x
I

)Ax,

where x
1

is in Ex,x + ax].

t.
1014
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(b) Derive the differential equation

dp
U7 = gP

(c) If the atmosphere is at constant temperature

then p is proportional to P. Solve for p as a

function of x, given that p(0) = 15 lb/sq in, and

/gp(0) = .08 lb/cu ft.
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6. Systems of Equations.

In more elaborate problems than those considered

in the last soLtion differential equations can arise

in forms other than the standard y' = f(x,y). Consider,

f,or example, the equation

( I) yt2 4. y2
= x2

involving the independent variable x, a function

y = y(x), and its derivative y' = y'(x). Equation (I)

is equivalent to the combined statement

(2) y' x2 y2 or y' = _41- - y2

Any curve that satisfies (2) at each point (x,y(x))

is a solution of (I): note that it is allowed to sat;sfy

a different part of (2) at different points. A sirp)er

example to see is

(3) y
t2 - (y 1)yl + y = 0,

which gives by factoring

(4) y ' - I = 0 or Yi - y = 0.
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The curve (Figure 6-1)

y =

x+1 ifx<0

e
x if x > 0

satisfies (4), and hence (3), at all points. By com-

bining the solid and dotted curves in the figure, four

solutions satisfy-

ing f(0) = I can be

obtained. This

does not contradict

the fundamental

theorem since (3)

is not in the form

for applying this

theorem. Each part

of (4) is; but each rinure 6 -I

part of(4) taken as a se;arate equation, has a unique

solution through each point.

This example illustrates some of the complexities

thet can arise if we consider differential equations

of the form F(x,y,y') = 0. In most cases, however,

the routine, but tedious, procedure of the following

example can be used.

1 017 0 7
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Example 6-I. Solve

(5) cos y' + y' = x, y(1) = I.

Here we cannot solve for y' explicitly, as in (2),

but we can proceed by considering y' as an implicit

function of x and y defined by the given equation.

For x = I, y = I equation (5) becomes

(6) cos y' = I

which has solutions

(Figure 6-2)

y' = 0, y' re 1.11,

y = 3.70.

TY

zz

Z... COS Yi

3.70

The last two values

can be refined as

much as needed by

applying Newton's

method to (6). The

three values for y'

imply that through the

point (1,1) there

pass three solutions

of (5). Let us con-

centrate on the one

with y' = 1.11.

..A

YIFigure 6-2 --- 1

(1;0

1018 1.048
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One step of Euler's method, with h = .1, gives

= 1.1, yl = 1.111, and

(7) cos y' = 1.1 - .617 y'.

Now (7) also has three solutions but we are interested

in only one of them. For since we have assumed that

y/ is a continuous function of x, the value of y' at

X =
I

will be close to that at x = x 0' and so we want

the solution of (7) that is close to 1.11. I.n other

words, 1.11 should be (if our value of h is sufficiently

small) a good first approximation in applying Newton's

method to (7). Two applications of Newton's method

gives y' = 1.24 correct to 2D. We can now get

y2 = 1.11 + .1(1.24) = 1.23

and continue the process. Trouble can arise only when (5),

as an equation in y', acquires two equal roots.

At the next step they will (generally) separate again,

and we do not know which one to follow. This is precisely

the situation that causes the multiple solutions in the

previous example (see Problem I), and conditions out-

side the mere statement of the differential equations

are needed to decide which path to take.
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Of considerable more importance than the implicit

equations, F( ,y,y/) = 0, are the systems of equations.

Here we have more than one unknown function and an

equal number of equations. The standard form for a

system of equations is analogous to that for a single

equation, that is, the derivatives are expressed as

functions of the variables. For example, for three

equations in the three unknown functions x(t), y(t),

z(t), we have

xl = f(t,x,y,z),

(8) y' = g(t,x,y,z),

z' = h(t,x,y,z)

For a more general notation we can use a subscript

notation, thus:

YI = fi(x,y1,y2,...,yn),

f2(x/Y1/Y21.'"Yn)1

fn(x"I"2"'"Yn)'

or, more compactly,

1020 1070
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(9) = f
k
(x,yi,y2,...yn), k = I,2,...,n.

For such systems of equations the fundamental

theorem and Euler's method carry over in the simplest

possible way. Thus we have

Theorem I. If, in an (n + I)-dimensional region R

in (x,y,,y2,...,yd-space, each of the functions fk

in (9) is continuous and is Lipschitzian in each of

the yk, then for any point (x0,y1,0,y20,...yn0)

in R there is an H > 0 such that (9) has a unique

solution yk(x), k = in Ix - x01 < H with

Yk(x0) Yk,0' k 1"*"//*

The proof of this theorem is essentially no more

difficult than that of the simpler theorem in Section 3.

Euler's method is equally easy to generalize.

For simplicity let us take equations (8). The basic

recursion formula is

1021 I o
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(10)

x
n+1

= x
n

+ s f(t
n
,x

n
,y

n
,z

n
),

y
n+1

= y
n

+ s g(t
n
,x

n
,y

n
,z

n
),

z
n+1

= z
n
+ s h(t

n
,x

n
,y

n
,z

n
),

t
n+1

= to + s,

with the initial values, t0,x0,yc,z0 being given.

One important warning: in programming we generally

omit the subscripts and use, for instance,

x x + s f(t,x,y,z)

instead of the first equation of (10). This is

zll right, but then to use

y y + s q(t,x,y,z)

for the second equation is wrong. The above assign-

ment is equivalent to

Yn+1 yn s g" n 'x n+I py n'
z
n

)

'

which is not the given equation. The correct programming is
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xl ÷x+sxf(t,x,y,z)

yl 4-y+sxg(t,x,y,z)

z 4-z+sxh(t,x,y,z)

x xl

Y YI

t t + s .

The one phase of Euler's method that does not

generalize easily is the error analysis. Although

the same general conclusions can be obtained the

analysis is much more complicated, involving techniques

quite unsuitable for our present text.

So far we have considered only first crder

differential equations, that is, those in which only

first derivatives appear. Higher order equations, or

systems of equations, can be reduced to systems of

first order equations by introducing extra unknown

functions to stand for the lower order derivatives.

Thus

( I I ) y"' + 3xy" exy = cos x

is equivalent to the system

1023
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yl =

(I2) = v,

= -3xv + exy + cos x.

The system

x" = f(t,x,y,x1,y1),
(13)

y" = f(t,x,y,x1,y'),

which arises in considering the motion of a planet

through a resisting medium, can be replaced by

yl = v,

ul = f(t,x,y,u,v),

v' = g(t,x,y,u,v).

Theorem I tells us what kinds of initial conditions

are appropriate for such equations or systems. For (12)

we would want values of y(x0), u(x0), vfx0) as initial

conditions, corresponding to y(x0), y'(x0), y"(x0) for

(II). Similarly (13) would need x(0), y(0), x'(0), yl(0),

that is, the initial position and velocity of the planet.

1024
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For higher order equations, a different type of

condition arises naturally. This is typified by the

trivial equation

(14) y" = 0.

The solutions of this are, of course, the lines

y = ax + b, where a and b are arbitrary constants.

The standard initial conditions

y(x0) = y0, y'(x0) = z0,

amount to specifying a point on the line and the slope

of the line. It is well known that a line can also be

specified by two points; that is, that (14) has a unique

solution satisfying

Oxo) = Yo, y(xl) = yl.

(The x
I'

y
I

used here should not be confused with the

x1,y1 occuring in Euler's method.) Such considerations

lead to the important two-point boundary value problem ,

namely:

Given a region R in the xy-plane and a differential

equation

(15) y" = f(x,y,y1),

1025
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under what conditions will two pointsin R, (x0,y0) and

(x y
1 '

) x
0

< xi, determine a unique solution of (15)

on x0 < x < xi with y(x0) = y0, y(xl) = yl?

This is a difficult and complicated problem even

for relatively simple equations. The following example

shows the kind of thing that can happen.

Example 2. y" = -y, y(0) = 0, y(x1) = y1. It is

easy to check that

y= a sin x+ b cos x

satisfies the differential equation for any a and b.

In Problem 6 of Section 7 it will be proved that These

are the only solutions. To satisfy the condition

y(0) = 0 we must have

0 = a sin() + b cos0,

or

0 = b.

Then to satisfy the condition y(x1) = y1 we need

yi = a sin x:.
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Case A: sin xi # 0. Then a = yi/sin xl and there

is a unique solution.

Case BI: sin x
1

= 0,

yl # 0. We require

yi = a x 0, which is

impossible; hence, no

solution.

Case B2: sin x
1

= 0,

yl = 0. Here we need

0 = a x 0, which is

true for any value Figure 6-4

of a. Hence there is an infinite number of solutions.

The situation is illustrated in Figure 6-4. The

trouble in Case B lies in the fact that every solution

that goes through (0,0) also goes through (ir,0). Con-

ditions under which situations like this occur, and the

conclusions that can be drawn in these cases, constitute

an important chapter in the theory of differential

equations, but one that we cannot investigate here.
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(a) Show that

one of the

PROBLEMS

each solution

forms:

(i) y = x - a + I,

(ii)

(iii)

y

y

=

=

ex-a

x - a

ex
-a

+ I

(iv) y =

of equation (3) has

if x < a

i f x > a

ex-a if x < a

x- a+ I if x > a

(b) Show that for any point (x0,y0), with y0 # I,

there i s an H > 0 such that for I x - x0 l< H

there are two solutions of (5) through (x0,y0).

(c) Show that for any point (x0,1) and for arbi-

trari ly small H > 0 there are four solutions

of (5) through (x0' I) for Ix - x
0

I < H.
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(d) Show that the exceptional points described

in (c). are characterized by yielding double

roots for y' as solutions of (5).

2. Set up a program, analogous to the one of Problem 2

or 3 of Section 4, to solve a system of m first

order differential equations. Test it on the

following, given the exact solutions.

(a) y' = -yz, y(0) = I,

z' = 1/y2, z(0) = 0.

Solve for 0 < x < I.

Solution: y = cos x, z = tan x.

(b) x' = -x + y + z - t, x(0) = I,

y/ =x-y+z- t, y(0) = 2,

z1 =x+y-z- t, z(0) = 3.

Solve for 0 < x < 2.

Solution:

-e-2t

y = et +t+I+ 0

e

3. USe the program of Problem 2 to solve the following.

(a) y" = -y, y(0) = 0, y/(0) = I, 0 < x < 8.

Solution: y = sin x.
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(b) (1 - x2)y" - 2xyl + 20y = O.

y(0) = I, y1(0) = 0, 0 < x < .9.

Solution: y = 7 (3 - 30x2 + 35x4).

( c)

X

Gm

(y - x)2
y

-GE

(y - x)2
x(0) = 0,

y(0) = D, xl(0) = y1(0) = 0, G = 6.7 x 10
-11

E = 6.0 x 1024, m = 7.4 x 1022, D = 3.8 x 108

In how many seconds will the moon hit the earth?

Ans. 4.1 , 105.

4. Two tanks, of capa-

cities V and V
2

gallons, are full of

salt solutions. At

t = 0 the first tank

contains S
0

lbs of

salt in solution, the second has pure water. It is

desired to dilute the solution in the first tank by

interchanging the contents of the tanks at the rate of r

gal/min.

1030 .1 ono



www.manaraa.com

(a) Set up differential equations for SI and S2,

the amounts of salt in the two tanks at time t

minutes. Assume perfect mixing in the tanks

at all times.

(b) For the case

VI = 1000, V2 = 500, S0 = 500, r = 60,

what are the concentrations in the two tanks at

the end of 10 minutes? Ans. .361, .178.

(c) How long will it take to get the two concentra-

tions within 1% of each other? Ans. About 28 min.

5. Modify Example 2 of Section 5 to include the presence

of dingos, the wild dogs of Australia. Assume that

dingos live exclusively on rabbits and make other

appropriate assumptions to get differential equations

governing the populations of rabbits and dingos.

Solve these for various values of the constants and

various initial values to see if you can get a fairly

realistic model.
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6. A dingo is

chasing a rabbit

by running

d;rectly towards

it at any moment,

with velocity V.

If the dingo's

coordinates are

(x,y) and the

rabbit's (A,B) then

where

dx = V cos 0,
dt

dt
= V sin 0.

- x
cos e =

A
, sin e =

Supposing the rabbit runs in the circle

D = AA-x)2 + (B-y)

A= 1000 cos 375. ft, B= 1000 sin rr ft,

and the dingo has velocity 30 ft/sec and is at (0,0)

when t = 0, where and when does the dingo catch the

rabbit? [Note. Because of the various errors in

Euler's method you cannot expect D ever to become

exactly zero.].

10311.- 0
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7. In a flu epidemic, out of N people let x be the

number who have not been infected and y the number

who are infected. The remaining N - x - y have been

infected, have recovered, and are now immune to

further infection.

(a) Justify the equations:

dx = -axy,

axy - by,

where a and b are constants.

(b) Assume y(0) = m > 0, x(0) = M > b/a. Justify

the following conclusions.

(i) y increases at first.

(ii) x always decreases, eventually

becoming < b/a.

(iii) y is a maximum when x = b/a and then

decreases, approaching zero as t co.

(iv) x may approach a limit x. > 0.

(c) Take N = 100, so that x and y are percentages,

and M = 100 - m, and run solutions for various

values of m,a, and b. In particular, try to see

how x
co

depends on these parameters.
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Separatibif-of Variables.

We return now to the first order equation y' = f(x,y).

Although numerical computations, using Euler's or some

similar method, can get an approximate solution to

essentially any such equation there are various reasons

for finding analytic solutions, if possible. Perhaps

the most important reason is that the form of the solution

may tell us more about its behavior, particularly under

changing initial conditions, than a mere table of values.

Thus the knowledge that the solutions of y' = x/y are the

hyperbolas y2 - x2 = c is useful information th..., is not

likely to be obtained from numerical solutions.

The solving of y' = f(x,y) is a generalization of

the process of finding an indefinite integral, for the

latter is simply the special case y' = f(x). Thus we

might expect to encounter all the difficulties, tricks,

and special cases that were the subject of Chapter II,

along with some new ones. This is indeed the case. Of

all the various means that have been devised for solving

a differential equation we shall consider in this chapter

only two or three, suitable for many common and important

cases.
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The Method of -Separating variables was introduced

in Chapter 9 and has been used without comment earlier

in the present chapter. Let us look at it a little

more critically.

Example I. y' = , y(0) = .5.
Y x2

dv
We can separate variables, first writing y' as dx , to get

either

(I)

or

ydy dx

i:TT /777-7

ydy dx

In the first form we must have Ix' < I, 1y1 < I and in the

second, lx) > I, IY1 > I. Seeing that our initial point

satisfies the first pair of inequalities we must use (I).

This integrates to

(2) = arcsin x - c.

The value c is determined by the initial point to be

c = VT/2 = .866... . So, finally, solving (2) for y gives

i035
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(3) = (c - arcsin x)2

the positive sign of the square root being chosen to

give y(0 ) = .5.

The graph of (3) is

given in Figure 7 -I for

the maximum domain of x.

However, this whole curve

is not a solution of the

differential equation.

For it is evident from

the original equation

that y' > 0 for y > O.

Hence the piece BC of the

curve must be excluded, and the domain of the solution (3)

is only the interval

Figure 7 -I

or about

-sin(1 - c) < x < sin c,

-.134 < x < .761.

In this case the restriction on the formal solution (3)

was easy to deduce, but this kind of trouble may occur

in subtle forms. One must always be most cautious when

1036
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dealing with multiple valued expressions like square

roots and inverse trig functions. The following theorem

tells us how we can proceed in a general case.

Theorem I. Let f be unicon in (a,b) and g in (c,d),

and let g(y) ¢ 0 for all y in (c,d). Let x0 be in (a,b)

and y0 in (c,d). Let

F(x) = f f(t)dt, G(y) = f g(t)dt.
x
0 YO

Then

(a) F is defined in (a,b).

(b) G is defined and strictly monotone in (c,d).

(c) G has an inverse function H.

(d) y(x) = H(F(x)) is defined for all x for which F(x)

is in the range of G.

(e) G(y(x)) = F(x) for all such x.

(f) y(x) is the solution of

y
f(x)

7377
y(x0) = y0.

"'

1037
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Proof. (a) Since x
0

and x are both in (a,b), the

interval [x0,xj is contained in (a,b). Hence f is

unicon on Ex0,x1 and F(x) exists.

(b) Similarly, G(y) exists. By the Fundamental

Theorem of Calculus, GT(y) = q(y) V 0 and so CI(y),

being continuous, is either always positive or always

negative. Hence G is strictly monotone, by Section 6-6.

(c) Every strictly monotone function has an

inverse, Section 7-3.

(d) The range of C :s the domain of H (Section 7-3).

(e) Basic property of the inverse function:

G(H(u)) = u for all u in the domain of H. Hence

G(y(x)) = G(H(F(x))) = F(x).

(f) Applying the chain-rule to y(x), as de-

fined in (d), gives

(4) yI(x) = HI(F(x))F1(x).

By Section 7-3,

H1(u) C'(H(u))

1038 Ot3 8
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Hence

(5) H'(F(x))
1

Gr(H(F(x))) G'(y(x))

Since F'(x) = f(x) and G1(y) = g(y), (4) and (5) give us

y'(x) = f(x),
g(y(x))

f(x
i.e., y(x) is a solution of y' = 7.3777) . Since, by

definition, G(y0) = 0, we have H(0) = y0. Since, also,

F(x0) = 0, we have, finally

y(x0)= H(F(x0)) = H(0) = y0.

The only reason for requiring q(y) 0 was to insure (b).

As long as G is strictly monotone the remaining conclusions

follow. For instance, g(y) = y2 on (-1,1) is acceptable

since

1
1 3

G(y) = 1-
2 = y 3 - y

YO
3 3 0

is strictly increasing on (-1,1).

To see how this theorem applies look at Example I

again. We have

1039
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f(x) = 11-2

g(y) =
/T7=-T

y = 0 is excluded since g(y)

F(x) = x dt

-I < x <

0 < y <

1,

I

x
0

=

=yo

0,

.5.

must not

arcsin

be

x,

G.

G(y = Jr
Y ydy _ /717-77 + C, c = /T/2.

The inverse function H is thus

(6) H(z) = - (c - z)2 ,

the positive value being used since A(z) must lie in

the domain of G. The range of G is c - I 4 r, < c, so

this must be the domain of H. This is a restriction

on (6), which otherwise could have the range

c - I < z < c + I. This restriction :,, what rules out

the arc BC in Figure 7-1. We now get

y(x) = H(F(x)) = - (c - arcsin x)2

as before, but with the restriction

1040
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or

c - I < arcsin x < c,

sin(c - 1) < x < c

giving the arc AD as the solution.

The conditions of Theorem I are sufficient to insure

a solution but they may not be necessary. That is, there

may be solutions that do not satisfy these conditions.

The equation in Example I, for instance, has the obvious

solutions y = I and y = -I. The former can be combined

with (3) to give the solution

y =

VI - (c - arcsin x)2 if sin(I - c) < x < sin c,

if sin c < x < I,

to give a solution in the interval sin(I - c) < x < I.

Since the two parts fit together with the same slope, 0,

the differential equation is satisfied at this point.

One must always be on the lookout for these extra

solutions. They usually lie along the boundaries of the

regions in which the other solutions are defined.

1041 /09i



www.manaraa.com

Some of the advantages of the analytic solution (3)

over a numerical solution can be appreciated by investi-

gating the dependence of the solution on the initial

point, or, equivalently, on the value of the constant c.

In Figure 7-2,

curves of the type
Y

AB are variations F a w 114

of the one obtained

above for c = VT/2.

The two extreme
-IA A A A C CI

cases of this type

go through the

points (-1,0) and (1,1) and correspond to c = I - n/2 and

c = n/2 respectively. For larger values of c, up to

c = I + n/2 we get curves of type CD; and for

-u/2 < c < I - u/2 curves of type EF. This kind of infor-

mation can of course be obtained numerically by computing

a large number of solutions for different initial values.

This is apt to be time consuming and therefore expensive,

especially if the critical curves through the corners

are to be determined with some accuracy.

D

Figure 7-2

1042
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The technique in Theorem I of using the integrals F

and G with x0 and y0 as lower limits can be applied in

Example 2. y

We obviously must have

x I ±1. IYI > I. Hence

any solution lies in

one of the six un-

shaded regions outlined

by heavy lines in

Figure 7-3. Consider-

ing the position of

the initial point (0,2)

we see that our solu-

tion must satisfy

-I < x < I, y > I.

We get

y(0) = 2.

02)

/la/ Ay

x
JO t = log

I

d I t -
F(x) = t + 0t2 -

1043
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the argument of the log function being chosen to be

positive for the values of x in which we are interested.

Similarly,

I loglt + /177-7-11
dt

fG(y) = J2

We wish to solve

2

= log(y + /77-1) - log(2 + VT)

=
I

log
+ - I

- 7 log
2 + /T

I I - Xy + /7777
log

I + x
2 + /5

This is obviously equivalent to

I - x
( 7 ) y + iN72-17 = a

1 + x ,
a = 2 + T .

The range of y /717T is I to 0, for y > I, hence x

must be restricted, if necessary, so that

I - x
I < a TT-7 <

1044
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The right-hand inequality is automatic for x >-I;

for x + I > 0 the left-hand inequality becomes

I + x < a - ax,

(I + a)x < a - I

<
a - I I + (3.

Hence x is restricted to -I < x < 1/I,

Thus

To solve (7) for y note that

171277 /y 2

/y2 I
+ x

a I
- x

Adding this to (7), and doing a little algebra gives us

as the solution

(8)
x2 - /Tx +

y = 2 -I < x <
I - x2

105.y
1045
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Figure 7-4 shows what happens at x = . The curve
/3.

(8) has a minimum point and is increasing for 1/13. < x < I,

but the given differential equation obviously implies

yl < 0. The dotted curve in

the figure is a solution of

7777
(x2 - I)

obtained by taking the other

determination of the square

root. So here again it is

the multiple valued quantity

that cause the trouble.

The solution can never-

I

Figure 7-4

X

theless be continued beyond x = I/3 since, as we have seen,

y = I is a solution. Our solution is thus

2
x2 - VTx+ I

I - x2

Y

if -I < x < I/T ,

if I/VT < x < I.

In Examples I and 2 we were able to solve explicitly

for y(x) in terms of elementary functions. This is not
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to be expected in ,peneral. The following example

exhibits two kinds of complications.

Example 3. y = ( 4 1. y2)eX2
y(0) = I.

Here we must avoid y = 0 but otherwise there are no

restrictions. We get

I
X" dt = jr e

t
2

dt.
t4 1'2

0

The left-hand side integrates by partial fractions, and

we get

(9)
7

x t2
4

-1 - arctany+1+ = foedt.
y

Here are our two troubles: First, the right-hand side

cannot be integrated in elementary terms. We can express

it as a power series, or we can use Simpson's rule to

approximate it for a given x. Having done so, we then

have the problem of solving (9) for y. This is another

numerical process, using bisection or Newton's method.

All in all, Euleris method, or some more accurate step-

by-step method, would seem to be preferable.

1047 1
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PROBLEMS

I. Solve the following equations. Note that your answer

is not necessarily wrong if it is not in the form given.

(a) y' = x2y. Ans. y = cex3/3.

(b) y' = ay/x. Ans. y = cxa.

(c) y' = ay
m
/x

n
, m I, n I.

I - m
x
I-n

+
] 1/(1-m)Ans. y = [a

I -

(d) y' = cos x cos y. Ans. y = arctan sinh(sin x + c).

(e) y' = e
x+y

. Ans. y = -log(c - e x
).

2y x+ lI

(f) y' = . Ans. y = tan log cx.

v2
(g) y' = ' Ans. y =

I - cx
x2 + I

Y(h) y' Ans. y =
x2 - I

c + x

2. The given solution of Problem 1(d) applies only to

-n/2 < y < w/2. Find the solution with initial condition

(a) y(0) = 2n.

(b) y(0) = 3n/2.
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3. Consider the special case of Problem 1(c),

(a) For n > 0 what solution has this equation that

is not covered by the given answer?

(b) For n = 1/2 find the special case of the given

answer that satisfies y(I) = I.

(c) Combine (a) and (b) to get the most complete

solution with the given initial condition.

What is the domain of this solution?

(d) Do (b) and (c) for the case n = 2/3. Warning:

There are complications.

4. (a) What is the solution of Problem 1(h) not covered

by the given answer?

(b) There are two points that behave peculiarly with

respect to the solutions of this equation. What

are they and what is the peculiar behavior?

1049
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5. Sometimes equations in which the variables cannot

be separated can be reduced to separable form by

an appropriate substitution. The substitution

y = ux replacing y by u, is often helpful. One

common case in which it works is when

f (x,ux) = f(I,u),

f is then said to be "homogeneous of degree zero

in x and y".

(a) Show that if f is homogeneous of degree zero

and y = ux then

du dx
f(I,u) - u x

(b) Solve the following equations, at least to the

point of expressing y as an implicit function

of x.

(i) y' = Y + exp (X).x x

Ans. y = -x log (-log ex) .

Ans. y = x ± 2x2 + c

1050
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( i i i ) y ' =
- y

, (see Section 2, Problem 1(e)).
x

(iv) y
,/y2 - x2

X

6,
x2

- x2 y ( y + )/y =77)
Ans. = C exp

3 x2

(c) What is the meaning of "homogeneous of degree

zero" in terms of line elements?

6. To solve y" = -y (see Example 2 of Section 6) we use

the form of y" given in Problem I of Section 7-6:

(a) Solve

sl" dy'
dx dy dx dy Y

-I--L ! = -y
dy '

to get y' = c0 w/c12 - y2,

(b) Solve

to get

c y2

y = c sin (cox + c
2
).

1051
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(c) Show that in all cases this is of the form

y = a sin x + b cos x.

7. A flexible rope of uni-

form linear density P

is hanging loosely as

in the figure. The

weight of the portion

between (0,y0) and (x,y)

must be balanced by the

upward component S of

the tension T at (x,y),

SO

S =
f0 gP -1-7(-7-t)2 dt.

Since the tension T is tangent to the curve we have

Hence

= y'(x).
0

ay'(x) = + y'(t)2 dt, a

1052
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(a) How do we get from this equation to

ay"(x) = I + y'(x)2 ?

(b) Using y" = y' , solve this equation for

y' in terms of y. Show that the simplest

form is obtained by choosing y(0) = a.

Ans. y' =
a

a2

(c) Solve the equation for y. [Hint. The easiest

method is that of Problem 8, Section 11-3.

Otherwise see Example 2.]

Ans. y= a cosh 25- = a
ex/a + e

-x/a) This
a 7

curve is known as a catenary.

1053 1-1 03
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8. Linear Equations.

(I)

A differential equation of the form

y = p(x)y + q(x)

is said to be linear. Linear equations, and their

generalizations to higher order equations and systems

of equations, have properties that make them especially

useful in examining the behavior of certain kinds of

physical systems. We shall return to this aspect later.

For the present we study the solutions of (I).

Theorem I. Let p and q be unicon in (a,b), let x0 be

any point in (a,b), and let y0 be arbitrary. Then (I)

has a unique solution in (a,b) satisfying y(x0) = yo.

Proof. Let r be a function, to be determined, positive

and unicon on (a,b). Since r(x) is never zero, (I) is

equivalent to

(2) ry' - rpy = rq.

We wish to choose r so that the left-hand side of (2)

is the derivative of ry. Since
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(ry)f = rye + r'y,

this will be the case if

(3) r' = -pr.

Thus we have to solve (3) for r. Since r(x) is never

zero on (a,b) we can separate variables, getting

dr = -p dx.

This gives

or

where

x

log r = - f p(t)dt + c,

r = e-s(x)

s(x) = f p(t)dt + c.
x0

Since we are only after some function r, c can be taken

to be any value we wish. We choose it to be 0 so as to

make s(x
0

) = 0.

Equation (2) now becomes

(e
-s(x)

Y)
e-s(x)0x),

from which we get

1055 1105.
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y = e s(x)
x

J* e
-s(t) q(t)dt + c]

Putting x = x0 gives c = y0.

This proof not only establishes the theorem but

gives a formula for the solution, namely

(4)

x

Y = You(x) + u(x) fx
qU(tTT)

dt
0

u(x) = e s(x) s(x) = Jr p(t)dt.
xo

However, it is advisable to use the above derivation

rather than trust one's memory of the formula.

If an initial point is not given we can take x
0

to

be any convenient point in (a,b) and regard y0 as the

arbitrary constant of integration.

Example I. y' e2x.

p(x) = I and q(x) =
e2x re unicon for all x so we need

not worry about bounds for x. Since xo is not given

take it to be zero. Then

s(x) = f I dt = x.
0

r(x) = ex.

1056
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Equation (2) is

e
-x

y - e
-x = e

-x
e
2x

or (always check this step)

- 1

(Ye
x

) = e
x

.

Integrating gives

ye
-x = c + e x

or, finally,

y = ce
x + e

2x
.

Example 2. y I - x

x2X -

y + I.

Here p(x) is unicon on any interval that does

x2 - I

not contain I or -I. Let us take the interval (-1,1)

and choose x
0

= 0. Then

5 = fo

r = e

t dt - 1

t2 - I `

-s = (I
x2)-I/2

( ( I - x2 )."1 Y)
1

= (I - x2)-I/2

(I - x2)-
1/2 y = arcsin x + c

0

y = - x2 arcsin x + c VI - x2

1657
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If we take the interval (I,...), with x0 = 2, we get

5 =

r =

Y =

log
x2 - I

3

3

x2 -

+ 2 x log(( + /77T).

Example 3. y' = xy - x3 y(0) = 2.

Here p(x) and q(x) are unicon over any interval. Using (4)

for brevity, we have

5 = Jo
x

t dt = x2/2,

u = e
x2

/
2

Y = 2e
x2/2

- e
x2/2

Jo
x

tae-t2/2dt.

The substitution z = -t2/2 reduces the integral to

2 I-x2/2 -x 2/2

ze
z dz = 2(z - 1)e

zi
=--(x2 + 2)e-x2/2 + 2.

0

1058



www.manaraa.com

Hence

or

y = 2ex1/2 + x2 + 2 - 2ex2/2

y = x2 + 2.

One can run into the same kind of trouble that was

illustrated in Example 3 of Section 7.

Example 4. y° = y + 17 , y(I) = I.

We get

s = x - I, u = e

y = ex-I - ex-I
f x

-t
= ex

-1 ,--
- ex fl yte dt.

The last integral is not expressible in elementary form,

so recourse must be had to numerical integration.

The situation is more annoying if p(x) cannot be

integrated in elementary form. Then two numerical

integrations are needed.
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We turn now to the properties of linear equations

of use in applications. Many a present-day device is

what is called a "black box"; that is, a mechanism -

using this term in the loosest fashion to include

electrical, hydraulic, acoustic, etc. devices - that

has an input q and an output y that are functions of

time. Thus for a TV set the input is radio waves and

the output is light and sound waves. For an automobile

(in the simplest case) the input is displacement of

the gas pedal and the output is angular velocity of

the wheels. In these and other similar cases the

relation between the input and output is much more

complicated than can be represented by a single

differential equation but many of the basic principles

remain the same. For a TV set, for example, it is

absolutely essential that the performance be linear to

a very high degree of accuracy.

We consider, then, the

situation illustrated in

Figure 8 -I, where q and y

are functions of time t

and are related by the

q(t)

1060 1.110
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equation

(5) f(t)y' + g(t)y = q(t), t > to .

Here f(t) and g(t) are two functions of t determined by the

internal structure of the black box. t
0

is some start-

ing time, usually chosen to be O. Our problem is to

investigate the form of the function y(t) and in

particular to see how it depends on the input and on

the initial value y0.

of

Consider first the case with zero Input. A solution

f(t)y' + g(t)y = 0

is called a null function of the equation. Equations (4)

show that, omitting the identIcally zero null function,

all null functions are multiples of one another, being

simply multiples of

1-

u(t) = exp (ft f(s)
g(s) ds) .

0

Note that the null functions depend only on f and p, that

is, only on the structure of the black box.

1061



www.manaraa.com

It now follows that any solution of (5) can be

expressed as any other solution plus a null function.

For if yi and y2 are two solutions, i.e.

f(t)y; + g(t)y, = q(t),

f(t)y; + g(t)y2 = q(t),

then, subtracting

f(t)(y/ - y2)' + g(t)(y, - y2) = 0.

That is, yi - y2 = z is a null function, and yi = y2 + z.

Hence if we have one null function of the black box

and if we have one output for a given input then we can

get all possible outputs by simply adding multiples of

the null function. In Example 3, for instance, if one

were lucky or clever enough to notice the simple solution

y = x2 + 2 he could get any solution by adding a multiple

of the null function y = e
-x2/2

. Which multiple is to be

added is determined, of course, by the initial value y(to).

So far we have only considered a single input. When

we come to consider the outputs corresponding to several

different inputs the basic property is the following,

known as the Principle of Superposition:
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Let yk(t) be an output corresponding to the input

qk(t), k = I,2,...,m, and let cl,c2,...,cm be any constants.

Then

m

y(t) = /2

I

c
J
y
J
(t)

J=

is an output corresponding to the input

q(t) = 22
1 J
c.q (t).

j=

It is left to the reader (Problem I) to express

this in terms of equations and to prove it by simple

substitution of the output into the equation.

This principle finds its most common applications

in the static case, the case in which the structure

functions of the black box, f(t) and g(t), are constant.

The differential equation is then

a y + by = q ( t)

and y = e kt , k = -b/a, is a null function. Our first

observation is the following:
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The output with zero input grows without bound if

k > 0, is constant if k = 0, and tends to zero if

k < 0. Since it is essentially impossible to adjust

a mechanism so that k is exactly zero the middle category

is of little importance. In the case k < 0 the behavior

of the black box is said to be damped; we set h = -k and

call h the damping coefficient. If k > 0 the behavior

is negatively damped. This case can occur on .y when

there is a source of energy within the box.

When we come to the problem of finding a solution for

a given input the principle of superposition ploys a vital

role. lf, for example,

q(t) = 6t2 - 5 + 3 sin 4t - 2e-6t

we need only find solutions for

q = t2, I, sin 4t, e
-6t

and then combine these solutions with the corresponding

constant multipliers. The above terms are typical of

those that appear in practical problems. For one thing,

we can approximate many functions by partial sums of a

power series, that is, by sums of powers of t. It is also

/Li
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possible to approximate many functions by sums of multi-

ples of sin nt and cos nt for different values of n.

Thus even if the input is quite complicated we may be

able to find an output, approximately, by approximating

the input by terms of the form x
n

, sin nx, cos nx. e
nx

terms are not so common but they are just as easily

handled, so we include them in the following discussion.

The method we use is the "guessing" method, or

"method of undetermined constants" of Section 11-6.

Case I. q(t) is a polynomial of degree n. We observe

that the solution

(6)
I kt Jr t

e
-kzq(z)dz

e
a to

will also be a polynomial of degree n. (Problem 2).

Letting this polynomial be

Y = a
0

a2t2 + + a
n
tn

we substitute in

ay' + by = On,

equate coefficients of corresponding powers of t, and

solve successively for a
n

, a ... a0.0'

1065
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Example 5. y' + 3y = x2 - I

Put y = a + bx + cx2. Then

b + 2cx + 3a + 3bx + 3cx2 = x2 - I.

Equating coefficients gives

So

3c = I, c = 1/3,

2c + 3b = 0, b = -2/9,

b + 3a = -I, a = -7/27.

y = 77(-7 6t + 9t2).

Case 2. An input of the type A sin nt + B cos nt, has

an output a sin nt b sin nt. (Problem 2).

Example 6. To solve y' + 3y = cos 2t one sets

y = a sin 2t + b cos 2t, to get

2a cos 2t - 2b sin 2t + 3a in 2t + 3b cos 2t = cos 2t.

Equating coefficients of in and cos gives

3a - 2b = 0,

2v + "AD = I,
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from which

2 3
a - TT , b - -ilr .

iHence y = TT(2 sin 2t + 3 cos 2t).

Case 3, (Proof left to reader: Problem 2).

ay' + by = eht has a solution

eht/(ah + b) if h k,

y =
I ktte
a

Example 7. Solve

yl + 3y = x2

if h = k.

- I + 5 cos 2t - let + 3e-3t , y(0) = I.

Using the results of Example 5 and 6, and Case 3, we get

as a solution of the equation

I
5

yi(t) = 77(-7 - 6t + 9t2) + TT(2 sin 2t + 3 cos 2t)

2 t
- Te + 3te

-3t

The general solution is

y = yi + ce
-3t

.
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Putting in the initial condition gives

1

7 15 I 425
- + - f + c, c = 772-

So, our answer is

Y = (425 + +
3t) e

-3t Ie + --t I (9t2 - 6t - 7)
702 27

+ (2 sin 2t + 3 cos 2t).TT

1068
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PROBLEMS

I. Prove the Principle of Superposition.

2. (a) Prove that the expression (6) is a polynomial

of degree n if g(t) is a polynomial of degree n.

[Hint. Prove it for a single term and then

combine terms.]

(b) Prove that (6) is of the form a sin nt + a cos nt

if 01-) = A sin nt + B cos nt.

(c) Prove that if q(t) = e
ht then (6) is

eht/(ah + b) if h k

1 . kt
; T e i f h = k .

3. Solve each of the following:

(a) y' = Y + x. Ans. x2 + Cx.

(b) y' = xy + x. Ans. Ce
x2/2

- I.

(c) = y tan x + sin x. Ans. C sec x - cos x.

(d) = -y sec x + cos x.

Ans. (sec x - tan x)(C + x - cos x).

1069
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(e) y

(f) y

(g) y

= --I-- - I. Ans. (C - log(x + I))(x + I).
x + I

= - I. Ans. (Cex + x + 2)/(x + I).
x + I

= y log x + xx. Ans. xx(1 + Ce-x)

4. The equation

2y. x2
(x2 1)3/2

has one solution that remains bounded as x +

Find it, and show that y(x) =

5. Solve each of the following.

(a) y' - 2y = e3x + 3. Ans. y = Ce2x + e3x - 3/2.

(b) y' - 3y = -3 sin 3x. Ans. y = Ce
3x

+ 4-(sin 3x + cos

( c ) y l = x2 - y . A n s . y = Cex + x2 - 2x + 2.

(d) y' = y + 2x + 3 + 4ex + 5 sin x + 6 cos x.

(e) yl + y = cos x + sin x. Can you see a solution?

6. Get the solutions of the equations in Problem 4 that

satisfy the given initial conditions.

(a) y(0) = 0.

(c) y(1) = 2.

(b) y(0) = 2.

(d) y(0) = I.

1010 .190
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7. Two tanks of

volumes V
I

and

V
2'

are connected

as shown, and

salt solution

r

VI Si

r
-4 (Th r

Vz

flows through them at r gal/min. Let SI and S2 be the

amount of salt in the two tanks. The flow into the

first tank is fresh water, and initially there is fresh

water in the second tank. When is the salt content of

the second tank a maximum?

Ans. If V
1

V V2, t

log VI - log V2

c VI

V
I

If V = V2,
r

This problem illustrates how the output of one linear

process can be used as the input of anothe'r. This

is the principle of multi-stage amplifiers in radio

sets.

8. An equation of the form

y ' = p(x)y + q(x)yn

is called a Bernoulli equation.

1.
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(a) Show that a substitution of the form u = y

gives a linear equation in u.

(b) Solve each of the following

= xy2

= y + x67

= x2 +
7

1-n

9. (Refer to Section 2, Problem 3).

(a) Solve y' = xy + I, y(0) = b.

(b) Show that the answer can be written in the form

where

(h
b0

- fx
CO

e
-t2/2

dt
)

e
x2/2

b0 = - f e
_t2/2

dt.

(c) Show that for large x the solution grows like
2 2/2

or -e x
e
x /2

depending on whether b > b0 or

b < b
o

(d) Investigate the behavior, as x 0,, of the

solution with b = b0.
_(t2_x2

[Hint.
)/2

y = - e dt. Use the fact

that t2 - x2 = (t + x) (t - x) > 2x(t - x) for

t > x.

1072
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The value of b0 can be approximated from (b) by

the methods of Section 11-9. By other methods one

can prove that b0 = -V777.

10. Consider a damped linear system represented by

= -hy + q(t).

We are interested in the long-time behavior and so

can Ignore the null function Ce
-ht which dies out.

(a) Fill in the gaps in the following argument.

If q(t) = sin(at + b), a > 0, then

y(t)
1 ih srn(at + b) - a cos(at + b)]

a2 + h2

h2 [,/a2 h2
sin(at + b)

a cos(at + b)i = A sin(at + c)
h2

where A = 1/162 +
a

, c = b - arctan .

N

(b) If q(t) = 2: B
n

sin(nwt + b
n
), w > 0,

n=1

write an expression for the corresponding output

y(t).
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The input In (b) is periodic of period 2w/w, i.e.

q(t + 2w/w) = q(t). The answer to (b) tells us

that the output is also periodic, with the same

period. Since most periodic phenomena, such as

sound waves, radio waves, tides, mechanical vibra-

tions, etc., can be approximated by trigonometric

sums we see that the property of periodicity is

preserved by a linear differential equation.

II. To solve y' = p(x)y + q(x), y(x0) = y0, by power

series,first if x0 0 replace x by t + x0, to give

(7) = f(t)y + g(t), y(0) = y0.

Assume we know the Maclaurin expansions of f and g,

f(t) = E atn, g( t ) = E bntn.
n=0 n n=0

It can be proved that if the radii of convergence of

these two series are R
I

and R
2

then the solution of

(7) has a Maclaurin expansion whose radius of con-

vergence is > min(RI,R2). Let this series be

y = E cntn = E
n
(x - x )

0
n=0 n=0

1014 / Zi/
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(a) Show that

CO
= y

0'

c = +ac
1

b0 0 0'

c2 = [bl (a0c1 + a1c0)],

c3 = [ + (a0c2 + a1c1 + a2c0)],

and so on.

(b) Find 5 terms of the series solution of

y = y cos x + sin x, y(0) = I.

I

Ans. y = I + x + x2 + rx
3 gx4 +

12. (a) Draw a flow chart for the algorithm of Problem

H(a), assuming the an and bn are stored.

(b) Adapt it to use recursion formulas to compute an

and b
n
when they are needed. Note that b

n
is used

only once and need not be stored whereas each an

and c
n

is used in ail later steps.

(c) Program the algorithm for Problem 11(b) and find

the first 20 terms of the series.

(d) Find the first 40 terms of a series solution of

; 1015 1
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y = --Y- + I, y(I) = 0.

Use it to approximate y(.1). How accurate do

you think your value is?

[First derive (I + t)- 1/2
=

;4 44442

I35
246 t3 +

13. A second order linear differential equation has the

form

f(t)y" + g(t)y' + h(t)y = q(t).

(a) What would we mean by a null function?

(b) Prove that if z
I

and z
2

are null functions so

is az1 + bz
2

for any constants a and b.

(c) Prove that any two solutions differ by a null

function.

(d) Prove the Principle of Superposition.

(e) For the special case

y" - 2y' -3y = sin t

(i) Find 1-yiz) null funcflons of the form e
kt

.

Ans. k. -1,3.
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(ii) Find a solution of the form a sin t + b cos t.

Ans. 5( -2 sin t + cos t).

(iii) Find the solution satisfying the initial condi-

tions y(0) = 0, y'(0) = I.

Ans. 40y = Ile
3t

- I5e
-t - 8 sin t + 4 cos t.

1011
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ANSWERS

Volume 11

Chapter 9

I-8, page 607 2
a) aeax, b) 2e x + e

2x
, c) 2x'e- + 2xe- d)

2ex logI - lo t z /z2-I
e) ,,,

f) - , g) e ,

(ex + I)' t2

h) 3e
3x [ I

e
3x

log(ex - I) [log(e3x + )12(e3x + I)

i) 2e
-2x (cos 2x - sin 2x), I) 3xx2(x log 3 + 3),

k) log x, I) cot x, m) sec x, n)
I + x(x2 + 1)-1/2

x + x 2 +

2 p)
2x logo + x2)

0) q) x2ex,

e
x

- e
-x '

1 + x2

r) eax(a sin bx + b cos bx),

1 :212122...609 L

a) y' = +
2

2

b)

I + x
2) y,

s) 25e
3x cos 4x.

( I 2 3 4

7-+-7> 3774. J Y'

c) y' = (-I + cot x - 2 tan 2x - #(. - 3 cot 3x + 4 tan 4x)y,

y'
y(x log y - y)
x(y log x - x)

A-31
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Chapter 9

1-10, page 609

(0,0)

4(2,T)
e

at x =

(e,7310

0,

a) Min at P(x,y) = (-1,-El7), b) Min at P(xl,y1) =

Max at P(x2,y2) =

c) Max at P(x,y) = (0,10), d) y is not defined

no extrema.

e) Min at P(x,y) = (ejiT ,

I
), f) Max at P(x,y) =

e

I-II, page 609

I -5x 1 x3
a) --5 e + co b)

3
e + c, c) loglogy - 11 + c

2
d) + logIt1 + I IogIt2 + 11 +--- c,

2
e) c,

f) loglex + 11 + c, g) loglex + 11 + c,

I I

-8-h) 7x - log12 + 3e
4x

1 + c i) arctan eZ + c,

I

j) logIsin xl + c, k) -loglcos xl + c, I) --
e

+ e,

1 _I I

- I
m) --- + I n 7

e2 e"

r I7p) 7- - log 2,

o) log 3,

r) does not exist, s) does not exist.
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1713j...saie 5 12

a) cosh sinh

Chan per 9

I
I

cosh2x sinh2x

b) )sinh x dx = cosh x + c

.1-cosh x dx = sinh x + c

ftanh x dx = loglcosh xl + c

fcosh x dx = loglsinh xl + c
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Chapter 9

1 -16, page 2-1, page 626

log 2 = .693174 a) s = 16t2 + 5t + 100

3 Arlog 3 = 1.098657 b) r3 = -3 cos 8 + 1 + 7 z

log 5 = 1.6095 c) y2 = x2 + 2x + 9

log 7 = 1.94598565 d) y2 = x2 + I

log II = 2.397984 e) y = log(c ex)

I

f) z = (-
'5
+ VT + 1)2log 13 = 2.5650518

2-2, page 626

a) a 0, ay + b = keax + c, b) a = 0, y = bx + C

2-3. page 627

a) 2

b) Twice the mass of earth.

2-4, page627

a) 1981

b) 1993
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2-5, page 627

a) e-' 1386t

Chapter 9

b) e- 69.3174

2-6, page 627

-12 = xy - 8y

2-7, page 628 2-8, page ,28

y = e-kx

2-9, page 628

r = -4k7fr

2111LEla612_

13.7 min.

key = x 3

2-10, page 628

a) .09956 Ibiga1.

b) 105 min.
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Chapter 10

I-I, page 642

a) convex, b) concave, c) convex for x > 2, concave for x

d) convex and concave, ,e) convex,

h) convex, i) neither

f) concave, g) convex

1-2, page 642

a) Proof: h" = f" + g" > 0

b) False. f(x) = 0, g(x) = x2, h(x) = -x2

c) False. f(x) = -I, g(x) = x2, h(x) = -x2

1-3, page 643

a) Yes, b) No

1-4, page 643

a) ex is convex, y = x + I is tangent at (0,1), so e
x

> x +

b) log x is concave, y = x + I is tangent at (1,0),

so log x < x + I

A-36
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1-6, page 643

(-1,2),

(±
I

Chapter 10

b) flexes at

37) d) flexes

f) flexes at

no flex

(0,4),

at (±)/3

(±.66,

3 17
(ya)

c)

e)

g)

flex

flexes

flexes

cot x

at

at

at

=

±-- ,
IT

(2,
2
--)
e`

h)

VT7),

±.22),

2 -I, page 653

a) Output

I, .75000, .66667., .04167

2, .70833, .67933, .01450

4, .69383, .69122, .00131

EXCESSIVE ROUNDOFF 8, .69383, 100131

2 -2, page 653

a) .69314, b) 19.625

2-4, page 655

a) .375, b) T = .38935, E = -.01435

c) M = .36794, E = -.00706, d) A
I

= .32865, E =

e) A
2 '

= .37508, E = -.00008

A-37 /

-.00369
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Chapter 10

3-2, page 663

a) x
0

= 2 b) x
0

= I

x = 1.54 xl = .75

x
2

= 1.522 x
2

= .73

IEI < .002 IEI = .005

3-3, page 663

x 2 + C xn
c ( c

a ) xn+
1

= Xn
xn -2- Tic xn xn

8 I 17 48
b) x

0
= 3, x

I

= ;-(3 + 3-) = 2.8333, x
2 2

= + ) = 2.828477

IEI < .0003

3-4, page 664

a) Any number N # 0 can be written as c x 10
2m , where

.1 < c < 10. Then AT = IF x 10m

b) Program and run for c = .1(.1)1(1)10, counting the

number of steps to get 6 place accuracy. One more

step will be needed for 15 place accuracy.
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Chapter 10

3-5, page 664

c -
= xn

I/x
x
n+1

= x
n

- cx2 + xn = xn (2 - cx
n

)

1 /xn

3-7, page 664

a) Use a = 0, b = I, b) Use a = 0, b = I

c) a = 2.5, b = 3 for large root

a = 2, b = 1.5 for smaller root

d) Two roots are 2 and 4. For the third root put z = -x > 0

and write as log z
loF 2

z. Take a = .5, b = I.

4-4, page 680

0,

'

a)

h)

3
-7

0,

,

.

1)

b)

I

7

4-7, page 682

c) 0, d)
I

, e)

log(I x)

log x

f ) 0,

= lim
x+1 -

= lim (-x) lim 15191a(--

x--1- I
- x

log x
= -I lim

a) e, b) ex, c) I, d)

A-39 liou

= 0.
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I-1, page 690

Chapter II

2+ c, b) /7(7x

d) --I e-2x + c,
2

+ c, h) tan 6

- 2)

f)

+ c,

a)

e)

g)

fix`' - x3 + .x2 - x

+1 arc-tan x c,

4 log 1 x + x2 + 31

2 -I, page 696

1a) e
-2x + c, b) 7 log 11 + sin 2x1

+ c, C)

log

sec

2-3 cos

x

30

+

+ c

c,
2/5

1)

c,

x +

e + c

c) -cos log t + c, d) >r<21-1 + c, e)
2
-I log 1 x2 + x4 + I{ + c

f) log(ex+e-x) + c, g) 3(log 1x3 + 11 +
I + c,

x3 + I

)

h) -arctan cos x + c,

j)

I
i) sin 4x - 76. sin 10x + c,

sin 4x + c+x01nis
To- k) -71 cos x - TO- cos 5x + c,

I) log 14x2 4x - 31 + 4 log 2x 3
2x + I

m) log 11 + tan xl + c, n) 4 I

A-40

+ c,

3x + I + + 2x + -2 + c,
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Chapter H

2 -I, page 696 - con ft.

o) arcsin (5 x - I) + c, p) iClog x)4 + c,

q) x2 - x +
1-16

4 [I og 12x2 + x

- x2 + 3x - 4 log Ix +

+ 19 log

2

+ c,
2x

2x I]

1s) arctan x2 + 4x + 3 + c, t)
3

log 12 + 3 tan xI + c

u) x2 + 2x - arctan x2 + 2x + c v) tan3x + c

w) tan x +
3

c,tan3x + c x) x - csc x + c,

y) -2 cot - x + c, z) arctan ( tan x) + c
5"

2-2, page 698

IT (cos 2x - cos 4x - 3- cos 6x +

2-5, page 698

c) ftan8x dx =
7

tan7x - tan5x
5

+

ftan8x dx = tan8x -
6
I tan6x +

logjcos x I + c .

A-4I

cos 8x) + c

3

4

.1108

tan3x - tan x + x + c

tan4x tan2x
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3 -I, page 710

x2
a) 7 log

I + x2I

c) I log
2

+ C,

e
2x

e
2x

1

Chapter II

b) -6-1 log
11/x2 - 9 - 3

x2 - 9 + 3

+ c, d)
2

sec 2x + c,

+ c,

e)
..12r

(2x - )1/2(x + 10) + c, f) -1 cos (ax + b) + c,
a

g) (x + 5)/i7=T + c, h)
3VT

i) (5x2 + 3)(x2 - 1)5/3 + c,
8u

//3
arctan

x-
I + c,

j) x + c,

3
k) 2(/ - log (I + I)) + c, I) ,27(x + I)

4/3 (4x - 3) + c,

3-2, page 711

Easily integrable for odd integers.

3-3, page 712

a)

c)

d)

-7-I cos52x + c,

I

log2 sin x
2

l

(5 (5

b)
4

tan22x

l +

+

c,

c,

- sin x

7) cos53x + c,cos23x -

A-42
Ii
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3-3, page 712 - con't.

e) -s

Chapter II

T sec3x + c, f) I tan3x + c,
3

g) -
2 (a + b cos x - a log la + b cos xl) + c,
b2

1

h) T log - tan4x1 + c

3-5, page 712

jrsin 2x + a sin x
Hint: dx =

cos 2x + a cos x

3-6, page 713

a) -3 (4 - 2)1/2(x2 8) + c,

(2 cos x + a) sin x dx
cos2x I + a cos x

b) -7 /4 - x2 + 2 arcsin 7 + c

c) (4 + x2) 1/2E1(4

d) x2 - I + log lx + x2 - 1 I + c,

e) (2421) V4 - (I + x)2 + 3 arcsin
(I + x

f) (x - 2)/4x2 - 4x + 8 + c, g) (x - I)/32x2 + 2x - I + c

2ax + x2
h) - + c

ax

A-43
1140
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Chapter 11

3-9, page 715

a) x - tan 7,- + c,
z

b) log II + tan .21 + c,

1

c) log
VT.

e) log

I + tan +

I + tan -

sin x
+ stn x + c,

+ c,
I X

d)
2
I log tan -

4
tang

2
-1

f) f log 11 + tan + c

g) log BI

A = /4 - 2 cos x 2 cos 2x - (I + sin x cos x)

B = ( I cos x)

h) a2 > I:

a2 < I :

a2

a2 = I csc

3-10, page 715

2
a rctan

I og

cot

( 1

( a - I) tan .2-

+ c

+ c

a)

1

tan + - a2

-

x

a2

- a

( 1

x

-

+ c

a) tan
2

- --7-72-

See Problem 5-2, Page 719

A-44 t4
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3-11, page 716

b) a) a2 > b2 + c2

Chapter II

2 arctan + k
(a - c) tan 7 - b

d = a2 b2

a2 < b2 + c2 a c: log

2

(a - c) tan b - d

(a - c) tan b + d

d b2 c2 a2

0
2

) a = c, b 0 El- log J tar

Y1) a2 = b2 + c2, a 3i c:
5 - (a c) tan

Y2) a = c, c 0, b = 0:
a
- tan

4 -I, page 726

x

2

2

+

a) - x cos x + sin x + c, h) -e-x(x + + c.

+ k

c) x arcsin 2x + TI - 4x4 + c, d) x tan x - log Iseso xl

e) 3x(tan 3x 3x) log LIcc 3x1 + x2 + c
2

f)

h)

j)

.(X - f) arcsin />7

x[(log x)2 2 log

I7 (x2 arctan x - x

+
2

x

+

g)

+ k

- 2x + 2) +,c,

+ 2] + c, 444 + 2 (30 1 4) r,

arctan x) + c

A-45 1.1 4
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Chapter II

1:122221.2.26 con't,

ax
k) ( a co,.: bx + b sin bx) + c,

a 2 + b2

I) - [(x2 I) sin 2x x cos 2x] + c,

rn) V7 7-72-4 (x2 8) + c,

n) /77-1777 arctah x - log Ix + 11771 + c,

o) x log Ix2 + II - 2 (x - arctan x) + c,

2esin x (sin x - I) + c, q) 2 (sin 67 - 1 co, /7) c,

I x2 x
r) e - I) + c, s) log x +

I

log Ix + c
-777

4-2, page 727

I [sec x tan x + log Isec x + tan xl] + c

4-3, page 727

e [x(sin x - cos x) + cos x] + c

A-46 / .3
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Chapter 11

5 -I, page 737

I 11 5

a) --I (2x + 32 + c, b) -x + 7E-3 logI3x + 21 2 log12x 11J+ c,

c) 7x2 + 2x + log Ix + 1

27
+ log Ix - 31 + c,

d) x 1

1 log Ix - 11 + log Ix - 21 4 c,

1
x + 2 1 1 - 3e) mr log I 3 7.-7- + 375- log 17 + c,

f) x - 6 log Ix - 11 + H log Ix - 21 + c,

g) 4
xloglx- 11 -loglx+ 11 + + C,2

1

h) 9 3- 2 log (x2 + 4) + arctan 2
+ cs

x - 1

1) 2 log Ix + 31 + y log 1) 7(21.

k ) - l o g I x - + 2 l o g I x - 2

I) 1 `2 log

m)
1

X2 + 4
(x - 1)2

+ C,

+ c,

1 x
10 19+ 7- arctan-

Clog (x2 + 2) + 7 log 1x2 + 61

+ I arctan x + 1 arctan c,
21/2 216 J6 J

A-47

1 1 et
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Chapter II

5 -I, page 737 - con't.

n)
2
I

Lr-3 log Ix + 11 - 14 log Ix + 21 + 13 log 31] L

3
o)

x - I 5
+ log 1 x2 + 2x + 21 - - arctan (x + I ) + c

2+ 2x + 2

1(x - 1)3(x + 2)4p) 7 log x + 3 + C,

q)
x

1

4.+ 2 log Ix 11 + log Ix + x + 11 + arctan 2x1 4

3

3 1r) + 3 I oq 1x2 + II + c, s)
2

x2 + 1

5-2, page 738

a)

c)

2

I 1- tan

xsec21 tan Zr
2

+ c,
x

2

ci tan2 ..)2
log

b)
2

I

I og

1 - tan 7,,

I + tan -x-
z

a) I (log I / x + 2x2 - I

2!/

X2

X2 +
+ c,

tang* 2 tan 7. -

X

t n 2PS + 2 tan
2

+ C,

x
c,

2x2 - I

r
fi

X2
b) (x3 - TLx cos.. x + sin 6x - .37 sin 6x]) + c

+ C,
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Chapter II

6-1, page 744 - con't.

c)

3/2
1 ((2x - 1) 1)1/2

-1/2)
+ 2(2x - - (2x - 1) + c,

sin 4x sin 8x 3
d) cos 2x - + -72- + 4)0 c,

10x + 2 1

xV7
e) log 12x2 - x -

I + 2--
-18V2x2 - x - I 2T

1

2
f) k!og 12x - 11 2x - I 2(2x - 1)

g) e
2x

..rir (sin 3x 6 cos 3x) sin33x

+
27 3x)

9
, ((sin 3x - 3 cos x) sin 3x + 7)] + c,

+ c,

1 + c,
417

hi /
3x 3

log

73" k(2x2 - 1)2 2(2x2 - I) 4/

2x - /71

2x + V71 /
+ c

1i) --((tan23x + 7 log 'cos 3x + II) +
2x tan 3x - x2 + c,

54 3

arctan
2

6- rage 74

x

2(x2 + 4)
+ c

-X3 12)(2 23x + 23)e-x + c
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6-4 page 745

Chapter II

I eax r.L%ac + bd)sin bx + (ad - IbG)cos bx] c

a2 + b2

6-5, page 745

ad - c -a2c - 2ad + c
D = (ac + d) r = , q

e
e2

-a2d + 2ac + d
-

e2

6-6, page 745

e = a2 + I

hx Dpx2 + nx + r)sin kx + '.1x2 + mx + n)cos kx] + c

7 -I, page 761

a) 3 log 2 -
5

2
= -.42, b)

L
- log 2 = .43845,

4 2

c)
I (12i7 iog 2 - 8iT + 4) = .394, d) log 2 = .6931,

2

5 2
e) 0, f)

3
(I + bV7) = .537, g) (-e

-Tr
+ I)

7 -3, page 762

a) crab,
4

b)
3
-mab2

1/47
A- 50
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8 -I, page 773

a) 3,

Chapter II

b) divergent, c) n, d) divergent, e)

f) divergent, g) 0, h) divergent

2 + h2

8-2, page 773 8-3, page 774 8-4, page 774

72
a)

4

8-5, page 774

No. Since li4.0 m x log x = 0
x

x log x

9-2, page 792

b) n = 130

b) divergent

8-6, page 774

7 2n

a2

a) 1 x 5280 ft/lb.

b) 800 x 5280 ft/lb.

c) 3930 x 5280 ft/lb.

d) 4000 x 5280 ft/lb.

2:12.!_2229 793

= .04

11 48
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I-I, page 820

2

5

1-4, page 820

272 + 47

Chapter 12

I-2, page 820

11

7

1-5, page 820

1-3, page 820

272

1 -8, page 821

0

24017
,

4

5n
a) b) a)

,
b) 47

8

1-9, page 822 2 -I, page 830

a) c > , c > 2 GmPL
b) . No,

D(D + L)

2-2, page 831 3-1, page 834

(D+LI)(D+L2)
a) Gp2Iog

D(D +L1 +L2)

3-3, page 834

350000 ft/lbs

3-5, page 834

(c) No.

3-2, page 834

28.080n ft/lb 50000n

3-4, page 834

a) l7r2L2p ft/lbs,

8333333.33325p7 ft-lbs.

4-2, page 843

a) 16.43, b) 3.82, c) 272a,

b) 4Tr2, L2 ft/lbs
8

d) I + a2 - log II + 7147-711 + log (al - 1.032,

A-52 1 14 9
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Chapter 12

4-2, page 843 - conit.

e) 47777T - log II + e2c + 11 + c - 1.032

4-4, page 843

b) S op, C has no length.

4-6, page 845

c) L
1/2

= I + -- log 11 + -2- 1.62

v7

5-2, page 853

a) 2/7, b) 0, c) 1/2, d) 7/4, e) log 2

5-3, page 854 5-4, page 854

a)
2a-, b) a
3 4 '

5-5, page 854

c) a a)
2 2a2, b) a c)
7 7

4
a

7

I 1

a) , b) ,
c) d),

17 IT

e)
2 (log' - 2 log 8 + 2)

1/2
= .57

3T

i..; A-53 1 150
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6 -I, page 866

e2 - 3
a) 6 = 4.1,

e2 - I

6-2, page 866

a) 7 = 3
3

d) x = , y = -1,

6-3, page 866

Chapter 12

b) 6

b) x = 0, 7 = tb , c)

e) X does not exist, y =

6-4 page 867

8

7( = -c =

Area is infinite. Area is infinite, therefore centroid not

defined.

6 -5, page 867 6-6, page 867

5
7 = na, y = = y

4b
37T

6-9, page 867

a) Origin at lower left corner

x = 2.8 , y = 5.1 , b) x = 5, 7 = 7.0

c) x = y = 4.5, d) x = 10, 7 = 4.9

e) Origin at upper left corner

x
a

3
, y = -x,

6

f) T = 2.9, 7 = -5.6

A-54
1 /5
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Chapter 12

6-12, page 869

a) P(1/2,1/2): barycentric coordinates m1 = m2, m
3

= 2m
2

P(1,0): barycentric coordinates m1 = m2, m3 = n

P(0,1): barycentric coordinates m1 = m2 = 0, m
,

arbitrary

m
3
(2 - x - 2y)

P(x,y): barycentric coordinates m1 =

max
m
2

=

b) barycentric coordinates xy coordinates

A-55

2 1( )
3 ' 3)

(2
I

T 7

( 1,
2
1 )

(0, 0)

2y

(a+b+c'a+b+c)

1

2b
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Chapter 13

1-4, page 882

a) .001, b) .013, c) 4 x 10-5, d) 4 x 10-6

I-6, page 883

a) - d) x = , n = 13, No.JO

I -7, page 884

2n
a) I - 2x + 2x2, a

n
=

(-n).

v7 /2.
Iv/ 7 \ 2

b) "Ttx 7 a(x a = (-I) Er43
n 2n!

ea
c) ea + ea (x - a) +

a
.4 (x - a)2, an = r-TT ,

d) 2 + x - 2x2, an = 0 if n > 4; 4 - 15(x I/ + 28(x + 1)2,

3e) x +
3"
x + x

5

TT '

(i
1 .., 1 -r7 7- 1 * 7-n )31/2-r

f) 3 + ex - 9) - 71-67(x - 9)2, a =
n1

1

g) log 4 + .(x 37lx - 4) - (x - 4)2, a
n

=
(-1)

n4
,

n-1

A-56
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Chapter

1-7, page 884 - con't.

13

h) 2 - 4,x2 - ;x4, i) I + x+ 2,

1-9, page 886

= 6a) .947, n = 5, b) .17, n

1-10, page 886

+ Ox +e) The Maclaurin series is 0

converges for all x, its

f(x) only for x = O.

sum is 0

1:111 page 887

Hint: Let u = t - x and x = I.

2-3, page 900

3

a) limf;-- = 0,
'

b) None, c) None,

3J) x+ I 3 + zux
5x

Ox2 + Ox3 + . It

and thus converges to

CO

1

d) 2: -n777 diverges
n=1

2-4, page 901

a) n = 200001, if there is no roundoff, b) 9, c) 7, 13,

d) 4

A-57
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Chapter 13

2-81 page 902

a) .90, b) .176

2-9, page 904

d) Hint: Use n = 9, recursive formula a + -a x (n -I)/(n + 4).

3-3, page 916

a) cony. absolutely, b) div.,

e) cony.,

c) cony., d) div.,

f) cony. absolutely, g) cony. absolutely,

h) cony, absolutely,

k) cony., I) div.

4-3, page 926

a) cony.,

f) cony.,

k) div.

i) cony, absolutely, j) cony.,

b) cony., c) div.,

g) cony., h) div.,

4 -6, page 927

a) div.,

d) div., e) cony.,

i) cony., j) cony.,

b) cony., c) cony., d) cony., e) cony., f) div

A-58
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Chapter 13

4-7, page 928

a) cony., b) cony., c) cony., d) div., e) div.,

f) div., g) cony.,

4-8, page 929

h) div., i) cony. absolutely.

e) r(.5) = !.77246, r(6.5) = 387.92

4-9, page 930

b) 3.87 in., it is unlimited

5-1, page 949

1 Ia) 7 b) 1, c) d)
e '

e) 4, f) our present

methods do not suffice to determine the radius of convergence

o this series, g) I, h) I, i) I

5-3, page 950

a) x + x2 + I 3 + xI 57u+

2 x6
C) I + + + X +

Z

X3 x7 x9
x + + + +

3! 7! 9!

A-59

n=0

n=0

I 2 5 17 7
b) x + 4.x3 + x +

T TF T- Tx

x
2n

( 2n ) I

x
2n+ 1

(2n + I)!

115'

R OD

R = .
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Chapter 13

5-3, page 950 - con/t.

7x2 17
d, 1 1 4

4c
673 - 2520 x

8

f) I + x + x2 +
n2Ix

n

n=3

5-4, page 951

I 5
+ 5.75-Tx

1.54993,

+

d)

a)

b)

x - 3..-x

.946, c)

5-6, page 953

x
2n+1

n'
1-2-6 + I)(2n + I)!

flow chart, see next page.

a) -2, b) I, c) -I, d)
1

7 '
e)

g) ,
h) 0

1157
A-60

1

T f)
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Chapter 14

4-7, page 990

I
I

a) y(x) = -1 + x - I 2 3
+ - fix" + 37Tx 5

- ,I, x6 +

b) y(I) = -.236, c) 'El < .05

4-8, page 991

a) Simpson's rule, or even the trapezoidal rule, is better.

5-5, page 1008

ct.
)a) VI b) V = -Ve log (1 -

M

cV
e
ct

0
-

V Mn
c) S = e

r
(r - log r - I) - ;gt2

c

5-10, page 1013

a) 94.8 min., b) 48.7 min.

5-13, page 1014

c) p = 14e
X/4.7 if x is measured in miles.

iyH

A-61
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Chapter 14

6-4, page 1030

dS rS rS
2

dS2 rS rS

a) --v dt V
I

-7- '

b) .361, .178, c) about 28 min.

6-6, page 1032

Flow Chart, see next page.

7-2, page 1048

a) y = arctan sin h sin x + 2n,

3n
b) y = , for sec y + tan y becomes infinite.

7-3, page 1049

a) y = (-x 1-m
c)

T=W
, y = 0,

c) y =

(4 - x1/2)2

0

if 0 < x < 4

if x > 4

b) = (x1/2 + 2)2,

Domain 0 < x < co.

d) There is an infinite number of solutions of the form

(2 - x1/3)3 if 0 < x < 8

Y = 0 i f 8 < x < b

(b1/3 - x1/3)3 if x >

A-62
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Chapter 14

7 -4, page 1049

a) The solutions are y = 1, y = -1

b) PI(x,y) = (1,1)

P2(x,y) = ( -1,-I)

All the curves y = c++c: go through (1,1) and (- 1, -I),

but they have all different slopes at these points.

8-4, page 1070

y = -x2 +
3 3xx limex2 + =

x..47-7-T 47-7-T)

8-5, page 1070

1

d) y = cex + 4xex - 2x - 5 + 7 (sin x + II cos x),

e) y = sin x

8-5, page 1070

1 3 23
a) c = 7 , b) c = 7 , c) c = 3, d) c = 77

8-8, page 1072

ce-x + x - I

\

(ii) y = (ce
x/2 - x - 2)

2

A-63 116'0
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Chapter 14

8-9, page 1072 - con't.

(iii) y = /Ce2x - x2 - x -

8-9, page 1072

a) y= e x2 /2 Zx
e
-t2/2 dt

8-12, page 1075

Flow Chart, see next page.
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INDEX VOLUMES I - II

Absolute convergence,157,911
Absolute value,l7,33
Acceleration,419,594
Algorithm,65

for area,219 ff.
for Fibonacci sequence,

108,158
numericai.73
for partial fractions,800,

801
Alternating series,895
A,cti-derivatives,562 ff.
Approximation

of extrema,455 ff.
of function value,470 ff.

of integrals,211 ff.,
645 ff.,776 ff.

of limit of sequence,l25 ff.

of root of equation,I36,
656 ff.

of solution of differential
equation,958,975 ff.

Area,207,325 ff.
Arithmetic units,103
Assignment box,79
Assignment statement,79
Axiom(s)
Archimedean,7
comple'eness,202
of real numbers,6

Barycentric coordinates,868
Bounded function,670,919
Bounded sequence,173,905

Catenary,1053
Center of area,861
Center of gravity,856
Center of mass,856
Centroid,856
Chain rule,499
Circle, unit,50

area,125,211,347,703

Coefficient
damping,I064
of polynomial,45

Comparison test,907,909,
910

Completeness axiom,202
Codiposition theorem,399
Computer,65

concepts,65
language of,105 ff.
memory of,77,94 ff.
model of,76 ff.
word,95

Compiling,105
Control unit,103
Convergence

of improper integrals,
766

rate of,661
of series,889
of sequences,I32,149,

153,154
Continuity, 386,387
Continuous functions,

386 ff.,968
Coordinate(s),37

barycentric,868
system,36

Cores,95
Curve

length of,837
plane,835
slope of,410

Cycloid,549
Cylindrical shells,812 ff.

Decision box,68
Definite integrals,582,746
Derivative(s),408 ff.

chain rule for,499
of composite functions,

495 ff.
formulas,418,426,428,429,
427,598,599,603

of implicit functions,509

1.16:;
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Differential(s),541 ff.
Differential equations,

621,957 ff.
first order systems,1020
higher order,1023
linear,1054 ff.

Differentiatic,n,407 ff.
explicit, 509
implicit,509
logarithmic,605

Duhamel/s theorem,828

Error,47I
in approximation,2I9
bound,473,649,66I,778,782
roundoff,I18,438,979
truncation,978

Euler's constant,925
Fxponential function,597 ff.
Extended mean value theorem,

464

Floating point,I16
Flow chart,67 ff.

for integrals of convex
functions,651

for maxima,458
for Newton's method,662
for root of an equation,

140
for Simpson's rule,784
for trapezoidal rule,226

Formulas for volumes and
areas,449

Fraction,3
Function(s),31 ff.
circular,49
ccmposition of,57
concave,634
constant,38,542
convex,633
continuous, 386,968
decreasing,53

derived,416
domain of,33
elementary,686
exponentia1,597 ff.
gamma,769 ff.
gonerating,954
graph of,37
greatest integer, 47
identity,39
increasing,53
inverse trigonometric,
525 ff.

linear,46
logarithm,593 ff.
monotone,53,479 ff.
nu11,1061
piecewise monotone,229
polynomia1,44
range of,34
rationa1,46
roots of,46
strictly decreasing,53
strictly increasing,53
unicon,254
weight,850

Fundamental existence and
uniqueness theorem,969

Fundamental theorem of
calculus,575,579

Gamma function,769 ff.
Generalized mean value

theorem,673
Greatesi integer function,

47

Identities, trigonometric,
275,695

Inequalities, 12, 13
triangle inequality,20

Input,89
Input box,90
Integer,13
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Integral
approximation of,22I ff.,

645 ff.,776 ff.
definition of.235,317
deflnite,582,746
ellIptic,634
exponentla1,785
generalization of,823 ff.
improper,764
indefinite,582
tables,740

Integration,234 ff.
by partial fractlons,729
by parts,717
by substitution,566,699 ff.

Intermediate value theorem,
403

Interva1,25 ff.

Maclaurin expansion,873
serles,879

Mass ratio,1003
Maximum theorem,441
Mean

arlthmetic,28
geometric,28
value,846,848

Mean value theorem,462
applications,470
for integrals,851

Modulus, unlcon,290 ff,

Newton's method,656 ff.
Null function,1061
Numbers,3 ff.

Open region,968
Law of the Mean, see Mean Ordinates,36

Value Theorem
Length of a curve,837
LIHospital's Rule,666

Pappus theorem,864
evaluation of,666 ff. Parametric equations,548
infinite,670 Partial fractions,729 ff.
left-hand,668 Partial sum,888
of a function,374 ff. Piecewise monotone
of a sequence,156 functions,229

Line element,962 Polynomial,44
Linear differential equation, Power series,932

1054 ff Principle of superposition,
Lipschitz(ian) 1062

coefficient,293 Pythagorean theorem,4
condition,293
function,293,43I,969

Local maximum tests,466,485,
486

Radius of convergence,935

Local maximum point,443
Rate of change,533

approximation of,455
Ratio tests,912

Logarithm,593 ff.
Rational numbers,3
Real numbers,5
Related rates,533
Remainder

Machine Language,105 in Taylor expansion,873
in series,893
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Rolle's theorem,463
Round-off error,I18,438,979

Samos,94,103 ff.
Separation of variables,

1035
Sequence,I25 ff.,I49
bounded,I73
convergence of,I32,153,

154,156
Fibonacci,158
limit of,156

Series,879,888 ff.
absolute convergence,9I1
alternating,895
convergence,889
divergence,889
expansion of functions,

879 ff.
geometric,908
harmonic,890
Maclaurin,879
p-series,908
power,932
Taylor's,879

Set,63I
concave,63I
convex,63I

Simpson's rule,784 ff.
Slope of a curve,410
Solids of revolution,340,

809 ff.
Speed,367
Squeeze theorem,I89,394
Step function,48
Support,633
Systems of differential

equations,1020

Tangent Iine,1n7
equation of,410
slope of,410

.11

Taylor's series,879
theorem,465

Trapezoidal rule,266,778
Trigonometric functions,

51 ff.
Trigonometric identities,

275,695
Truncation error,978

Variable,36,76
Velocity,368
Volume,337

formulas for,449
of solid of revolution

340,809

Weight functions,850
Weighted average,I87
Work,360,832
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a
n+1

a
n

+
an -1 i= I +r

n
=

a a
n n

=
I

+

Now if lim r
n
= L# 0, we have

or

an

1 +
a
n n-1

a
n-1

I
I

I
l i m r

n
= l i m ( I + ) I + lim 1 + .r r I'm rn-)-.., n.-0-co n-1 n-4-0. n-1 n-1

n-co

(Do you see why lim r
n-1 must also equal L?) This equation

L = I + -lc can be rewritten in the form L2 - L - I = 0.

Solving this quadratic equation, we have

I +
L -2

Since the limit must obviously be positive, we can throw

away the negative solution, so that the only possible value

for lim r
n

is
1 +

2

112 192
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Example. Suppose a
n

is the sequence defined by a = 3, and

a
n+1

= a
n

2 - 2 for n >.I. If lim a
n

= A, then

A = lim a
n+1

= lim ((a
n
)2- 2) = A2 -2.

n4-0. n.+0.

Solving the equation A = A2 - 2, we obtain A = 2 or A = -I.

The first few terms of the sequence an are 3, 7, 47, 2207;

the sequence does not seem to be converging to 2 or -I. In

fact, all the terms are > 3, because a = 3, and if a
n

3,

then a
n+1

= (a ) 2 2 > 32 - 2 = 7 > 3. Therefore, the sequence

a
n
does not converge to 2 or -, and hence does not converge

at all

113 1 94
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PROBLEMS

I. Find the limit, if it exists, of each of the following

sequences.

(a) a
n

= 2 +
n

3

(b) bn -
7

1 -
8

(c) C = (4 - 1)2 - 3(4 -
n n n

(d) d
n

= n2 - ( n2 - 1)

2
n-1

1

(e) e
n

=

2n

2

n2
(f) fn =

3
4 +

n

(g) gn = (-1)n +
2n

(h) h =
n2

(1 -
2 2+ --) 3

n
n2 + 1 n1 2n

2. Exhibit two nonconvergent sequences whose product

converges.

3. Prove thatif lim x
n

> a > 0 and lim y
n

> b > 0, then

I im xnyn > ab.
nco

4. Prove that if 0 < lim x
n

< a and lim y
n

> b > 0, then

lim
xn

a

yn
<

b
, providing yn is never O.

114
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5. Prove that if lim x
n

= 0 and if ly
n

1 < a and lz
n

1 > b > 0
n4.00 x y

n nfor all n, then lim
n4.03

zn
= 0.

6. Find sequences xn and zn such that lim xn = 0 and zn > 0

x
for all n, and lim = I. (Compare Problem 4.)

n4-03
z

n

n

7. Suppose that xn is a sequence of nonzero numbers such

that for every number K there is an integer N such that

Ix
n

1 > K for all n > N. Prove that tI..M
x

= O.
n4-03 n

8. Modify the flow chart for the Fibonacci sequence in

Section 4 to provide for the output of the value of rn.

Output box should have the form shown at the right.

Write the program and run it.

See whether the terms r
n

actually N, ASUBN, RSUBN.

seem to be converging to

1 + /5.
. (Since in any earlier program you computed

I to .a large number of decimal places, it will be an

easy hand calculation to compute 1 +
2

to compare

with your computer output in this problem.)

9. Suppose K is a number and an is a sequence defined by

a = K, and a
n+1

= (a
n
)2 2 for n > 1. For each of the

1

following values of K, evaluate the first five terms

11. f W 185
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of the sequence an. In each case, determine whether

the sequence converges, and if it does, find its limit.

(a)

( b )

( c )

K = 2

K = -I

K = -3

(d) K = 0

s/T
(e) K

-I +
2

10. Prove that the sequence sin n does not converge. Hint:

Assume that lim sin n = L. Use the identity
n.±.0

sin (n + I) = sin n cos I + cos n sin I

to show that lim cos n exists and that, if M = lim cos n,
n+.0

then L = L cos I + M sin I. Use the identities

sin 2n = 2 sin n cos n

and sine n + cos2 n = I to obtain other equations relating

L and M. Finally, show that the three equations are

contradictory.
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7. The Squeeze Theorem

Before going on with our limit theorems, we will discuss

a theorem that has nothing to do with limits but which is

needed in the proof of the corollaries to the "squeeze"

theorem, which does involve limits.

The Weighted Average Theorem. If r, s > 0 with r + s = 1,

then ra + sb lies between a and b. (Here we use the word

'between' to include a and b themselves.)

When r and s satisfy these condition's the expression,

ra + sb is called a convex combination or weighted average

of a and b. For the common special case where r = s =

+ bwe have ra + sb = a

2
+ ib , the ordinary average or

2

arithmetic mean of a and b, which of course lies between

a and b. The theorem in the general case, for all its

simplicity, is frequently useful.

Proof: If a < b, then

a = ra + sa < ra + sb < rb + sb = b.
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I f a > b,

a = ra + sa > ra + sb > rb + sb = b,

and the proof is complete.

Actually, we can say quite a bit more about ra + sb

than is actually contained in the theorem. Assume a b.

The fact is that the point ra + sb divides the segment [a,b]

in the ratio of s to r. That is, if d1 and d
2 are the

distances illustrated below

d1 d
2

a ra + sb

then, using the relation r + s = I in the forms s = I r

and r = I - s, we have

d
1

= (ra+sb) - a = sb - (l-r)a = sb - sa = s(b-a)

d
2

= b - (ra+sb) = (I-s)b - ra = rb - ra = r(b-a)

so that

d
1 s(b - a)

.

2 r(b - a) r

It is further true that every number x between a and

b can be expressed as a convex combination of a and b.

a

118



www.manaraa.com

We leave it to you to check that choosing

r =
b - x
b a

yields r > 0, s > 0, r + s = I, and

s
x - a
b - a

ra + sb
b

-

x
a + b

b a

Theorem 10. (Squeeze Theorem) Suppose that lim an = L = lim b
n

.

n-0-m n n4.m

Further suppose that c
n

lies between a
n

and b
n

for n = I, 2, ...;

Then the sequence c1, c2, c3, ... converges and lim c = L.

n-0-= n

Proof: Let e >0. We know that we can find N so that for
1

n > NI , an will lie within a distance e of L. Similarly, we

can find N
2

so that for n > N
2

bn will He within a distance

of L. Letting N be the larger of N and N , we can see
1 2

that for n > N, both a
n

and b
n

lie within a distance e of L,

whence c
n

lying between a
n

and b
n
will also lie within a

distance e of L.

_A. AY

L- e a
n

c
n

b
n

L+ E

1

Example. Consider the sequence c
n

defined by c
n

=

By the binomial formula,

189
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(1+1)n = I + n(l)n-1(i) +
n n

. > 2.

1

1Taking the n th root, we obtain (1+ ) >2 n . Also 2 n
> I.

Since lim (I + ) = I and lim I = I, it follows by the
n4.00 n-4-03

1
Squeeze Theorem that lim 2n = 1.

n-0.0

Corollary I. If r
n

>0 and s
n

0 and rn + sn = I holds

for all integers n and lim a
n

= L = lim b
n

, then

lim (r
na n

+ sn b
n

) = L.

[It should be noted that we do not assume that the sequences

r
1

, r
2

, ... and s
1 ' s

2 '
converge.]

Proof: Letting

c = ra
n

+ s b
n n n n

we see by the conditions on r
n

and s
n

that c
n

is a convex

combination of a
n

and b
n

and hence c
n

lies between a
n

and

b
n

Since a
n

and b
n
converge to the same value L, then by

the Squeeze Theorem, so also does cn. That is,

lim c
n

= lim (r
na n

+ sn b
n

) = L.

190 201
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Corollary 2. If urn a
n

= L =

n.4.

lim b
n

and p
n

> 0, q
n

> 0

co

and for no value of n are pn and qn both zero, then

Proof: Let r
n

pnan + qnbn
iim L.

Pn + qn

Pn

Pn + qn
and s

n
=

qn

Pn + qn
so that

r > 0, s > 0, and rn + sn = I whence the conclusion
n n

follows from the theorem.

191
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PROBLEMS

I. Prove that lim nrn = 0 if I. Hint: If r 0,
n+co

we have, setting e = I - I,

Irl

0 < Inrn1
(I + e)

<

I + ne + nn(n -I)
e

2

2

for all n > 2.

2. Prove that lim nkrn = 0 if Id <I and k is a positive

integer.

3. Let r be a number and let d
n
be the sequence defined by

d = 1

1

d = I + 2r
2

I + 2r + 3r2
3

d
n

= I + 2r + 3r2 + . + nr n-1

(a) Calculate rd - d .

4 4

(b) Calculate rd
n

- d
n

.

(c) Obtain a new expression for d
n
by dividing the

result of part_(b) by r-I, assuming r / I.

(d) Prove that lim d1, exists if Irl < I.

192 2to
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(e) If Irl < I, what is the value of lim dn?
n-o,

4. Let r be a number and let d
n
be the sequence

d = a
1 1

d =a +ar
2 1 2

d =a +a r+a r2
3 1 2 3

d
n
=a + a r + a r2 + + a rn-1

1 2 3 n

where al, a
2

, a3, ... is the Fibonacci sequence.

(a) Calculate rd
n

- d
n

.

(b) Prove that lim a
n
rn = 0 if < , where

n440

L = lim
a
n+1

n440
a
n

(c) Calculate the limit of the result of part (a),

assuming that lim d
n

exists and that Id < 11: .

n440

(q Calculate lim dn assuming that lim dn exists and
n440

that Id <

I

L

5. Use the Squeeze Theorem to show that lim n2n 3n

Y:4 193
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8. A Geometric Limit

Right now, we are mainly interested in the limit to

be developed in this section as an example of the use of

the Squeeze Theorem. Later on, we shall see that this

limit is of very basic importance.

Suppose that al, a2, a3, ... is a sequence of positive

numbers converging to zero. Let

sin a
b
n

= n = 1, 2, 3, ...
a
n

What can we say about the sequence b1, b2, b3, ? Does

it converge? If so, to what value? The Quotient Theorem

cannot be applied since lim an = 0.
nco

This puzzler becomes accessible to us by the applica-

tion of the Squeeze Theorem to a pair of inequalities which

we will derive from geometric considerations. In this

(b)
FIGURE 8-1

1$4 2p-
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7

'

derivation, we need an < 2 but since the an's converge to

zero, this will be true if we restrict ourselves to suffi-

ciently large values of n.

FroM the inclusion relations (see Figure 8-1)

AOPQ C sector OPQ CAOPS,

we conclude that

area tOPQ < area sector OPQ < area LOPS.

By simple trigonometric considerations, each of these

areas is expressible in terms of x, the radian measure of

angle POQ, where 0 < x <
7

2

sin x tan xarea AOPQ - 2 ; area sector OPQ = i; area SOPS
2

Therefore, the last inequality can be reexpressed as

sin x
< <

tan x
2 2 2

Now the geometry has done its duty and we resort to simple

algebraic manipulation to bring this inequality into a more

usable form.

2Niultiplyilbythepositivenumbergives
sin x

1 <
1

sin x cos x

and taking reciprocals,

sin x
1 > > cos x.

x

Thus, when n is large enough that a
n

<
2'

we have

sin a
1

an
> cos a

n
.

:1
195 2 0 6
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Since cos a
n

= length of OR, evidently lim cos an = 1.

n4-03

Also lim 1 = 1. Therefore by the Squeeze Theor.,,,m,
n+0.

sin a
n

lim
a

n+co n

= 1 .

This "proof" rests on certain facts concerning circles,

areas, and arc lengths which you learned in your high school

trigonometry course. In high school, these facts were

supported by heuristic reasoning and appeal to intuition.

Consec,uently, we cannot regard the proof given here as being

entirely rigorous. Nevertheless, we will accept the results

derived here until we are in a position to establish them

firmiy.

2f }7
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PROBLEMS

I. Suppose that an is a sequence of nonzero numbers such

that lim a
n

= O. Evaluate each of the following limits,
n.4-co

and justify your answers.
sin a

(a) lim (Hint. What is if x 0?)

n-4-co
a

sin

n
-x

(-x)

(b) lim
n4-03 n

1 - cos an

2 sine x)

1 - cos a
n

(c) lim
n-4-co

a
n

(d) lim sin a
n

n4-co

(e) lim tan a
n

n4-03

sin ka

(Hint. Use the formula 1 - cos 2x =

(f) lim
a
n

n, where k is any constant. (Hint For k 0,

4-03n

(g)

consider the sequence bn = kan.)

tan a
n

a
n
3

n
- sin a

lim . (Hint Write in terms of sin a
n

n4-03

and cos a
n

and express in terms of previously-determined

limits.)

191 2 G8
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9. Completeness

Recall from Chapter 0 that a function f is said to be

increasing if f(a) < f(b) whenever a<b. In particular, a

sequence c
n

is increasing if c. < c
j

whenever i<j. On the

other hand, the sequence c
n

is decreasing if c. > c when-
]

ever i<j.

In examples in earlier sections, we considered the

Fibonacci sequence

I, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, .

and a certain sequence of ratios

r,r,r,r, .
1 2 3 4

derived from the Fibonacci sequence by the rule,

r

a
n+1

n a
n

n = I, 2, 3, .

We had shown that if the sequence r , r , r , ... converges,
1 2 3

then it converges to I +

2

/5
. Our computer output gave

1.)
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a strong indication that this sequence does converge to

this value, but we have not yet been able to prove it. We

will take up that question now.

In order to determine whether the sequence r , r , r ,

1 2 3

actually converges, let us consider the differences do

defined by

do = r
n+1

- r
n

By the definition of r
n'

we have

a
n+2

a
n+1

a
n+2

a
n

- a
n+1

a
n+1

do = r
n+1

r
n

=
a
n+1

a
n

a
n+1

a
n

Calling the numerator of this fraction pn and using the re-

currence relation for the terms of the Fibonacci sequence,

we have

p
n

= a
n+2

a
n

- a
n+1

a
n+1

= (a
n+1

+ a
n

) a
n

a
n+1

(a
n

+ a
n-1

)

= a n+1 a
n

+ ana
n

a
n+1

a
n

a
n+1

a
n-1

= ana
n

- a n+1
a
n-1

= -(a
n+1

a
n-1

anan )

Pn-1

ft
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Using this relation repeatedly, we see that

pn -Pn-1 Pn-2 -Pn-3 p1
'

so that all pn's alternate in sign and their absolJte values

are all equal to that of p , which is easily computed to be
1

p
1

= e3a1 - a
2a2= (2)(1) - (1)(1) = 2 I = I.

Thus, the pn's alternately take on the values +I and -I. And

now we have

do = r n+1 r
n a

n
a
n+1

Consequently, the differences do alternate in sign and

decrease in magnitude. (The denominators a
n
a n+1 obviously

increase as n increases.) This means that the values of

r
n
alternately oscillate to the right and left with ever

decreasing oscillations (see Figure 9 -I).

4 ti I-
I 1 1 1 1r r3 r, re r4 rz

FIGURE 9-1

(Another way of saying this is that each rn lies between its

two immediate predecessors.) Furthermore

21.7
.1
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r
n+1

- r
n a

n
a
n4.1

which obviously approaches the limit 0. We can see that the

r
n
's with odd subscripts form an increasing sequence and the

r
n
's with even subscripts form a decreasing sequence, and

the intervals

[rl, r2]

Cr r
4
]

31

Cry, r61

Cr7, r8J

are nested one within the other and shrink down to a point.

Clearly, the sequence rl, r2, r3, ... converges.

Clear as the convergence of this sequence is, it cannot

be proved. When these intervals shrink down to a point,

there is nothing to guarantee us that there is a number

associated with that point. This situation must be remedied

by adopting some completeness axiom. (An axiom is a state-

ment adopted without proof.) There are many statements which

could be taken as completeness axioms with equivalent effect.

The one most convenient for our purposes is the following:

201 21,2,
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Completeness Axiom. If L1, L
2

, L3, ... is an increasing

sequence and R1, R
2

, R
3

... a decreasing sequence with

lim (R
n

- L
n

) = 0, then the two sequences both converge
n-)-co

to the same number.

This axiom assures us that the sequence r , r , r ,

1 2 3

discussed above converges. It furthermore guarantees that

the bisection process used in finding roots will always

converge, even without the assumption that the function f

has a root on any interval [c,d] for which f(c) and f(d)

have opposite signs.

When this completeness axiom is adjoined to the Field,

Order, nd Archimedean axioms of Chapter 0, the development

of our axiom system for the real numbers is finished. From

these axioms, we can derive all the properties of the real

number system. The completeness axiom constitutes the

fundamental distinction between Algebra and Calculus. We

will find that this axiom will be invoked over and over

throughout the course to guarantee the existence of the basic

concepts of calculus.
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PROBLEMS

2cn + 5
I. Let a sequence c

n
be defined by c0 = I and c

n+1 c
n

+ 2

(a) If c
n
converges to a number L, what is L?

(b) Calculate c1, c2, c3, c4 as fractions and es decimal

approximations to the nearest ten thousandth. Does

this sequence seem to be converging to the value

L calculated in part (a)?

(c) Calculate c
n+2

in terms of c
n

and simplify.
d

(d) Let do = c - cn. . Calculate in terms of
n+1 d

n

2c
n

5

c
n

and simplify. (Use the formula c
n+1 c +2

n

and (c).) Show that the values of do alternate in

sign and that lim do = O.

(e) Explain how we can see that the sequence cn does

indeed converge.

(f) How large must N be in order that lon-LI < 10-9

for all n>N?

2. (a) Prove that 4xy (x+y)2 (Hint: (x-y)2 > 0.)

(b) In the arithmetic-geometric algorithm of Problem

7, Section 4, prove that if an < bn, then a
n+1

b n+1.

(c) Prove that if a
n

< b
n'

then a n+1 1 a
n

and b
n+1 <<

b
n

.

(d) Prove that if a
n

b
n

, then b n+1
- a

n+1
< 2 (b

n
- a

n
)

(Hint: Draw a picture.)

2$3

:214



www.manaraa.com

(e) Prove that lim a
n

and lim b
n
exist and are equal.

n 4c°

This proves the existence of the arithmetic-geometric

mean M.

3. Suppose a sequence cn is defined as follows:

c1 =

c2 = I -
2

I I

c3 =
,

7 + T

Cy. =

c
n

= 1 - 7 T T

We can form a new sequence Rn by choosing only the odd

terms of the sequence cn. Thus,

R = 1

1

1 1

R
2

= 1 - +

R =
I I- I I

3 2 3 4 5

1 1 1 1R
n

=
T T + 5 + . .

Similarly, we can form a new sequence Ln choosing only

the even terms of the sequence cn.

it .t`
1!

204
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(a) Using the Completeness Axiom, prove that the

sequences R and L converge and that lim R = lim Ln.
n÷.., n÷...

(b) Prove that the sequence cn converges and that

lim c
n

= lim R
n

= lim L
n

.

n÷... n÷... n÷=,

(c) Obtain a simple expression for Rn Ln.

(d) What is the smallest value of n such that

1Rn - Ln <
1000

(e) Use the computer to approximate lim cn with an error
n÷=,

of less than 1000

'4
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Chapter 3

AREA ANL INTEGRAL

I. Area

There are five fundamental properties, all very natural,

which form the basis for our development of the subject of

area. These are:

Any bounded region in the plane has area, which is

a nonnegative real number.

Congruent regions have the same area.

If the regions R and R
2 1

are such that R C R
2 1

then Area of R < Area
2

of R .

1

IV. If a region R is decomposed into a number of non-

overlapping parts, say R , R , R , then
1 2 3

Area of R = Area of R + Area of R + Area of R .

1 2 3

217
111
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V. The area of a rectangular region is the length times

the width.

We will not worry about units. We will always be working

in the coordinate plane and will be using as our unit of

length the unit used in constructing the coordinate system.

Knowing the area of a rectangle, we can immediately find

the area of a right triangle. (See Figure I-I.) In the

rectangular region R, we see that a diagonal divides the

rectangle into two right trjangles which are congruent and
fit4,

therefore have equal areas.

Thus

so that

R

L
t

R,
R 2

L
FIGURE I-I

Area of R = 2(area of R )

Area of R = area of R L x W
2 2

This is the familiar fact that the area of a right triangle

is half the product of the lengths of the legs.

208
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We can further find the area of any triangle by a similar

method. (See Figure 1-2.) We see that drawing an altitude

FIGURE 1 -2

divides the triangle into two right triangles so that

Area of R = Area of R
1
+ Area of R

2

bih b2h bih + b2h

2 2 2

(b1 + b2)h
bh

2 2

Thus the area of any triangle is half the base times the

altitude. All this is of course very well known to you.

We can continue in this way to find the areas of polygonal

regions, that is to say, regions whose boundaries are made

up of line segments like the one shown in Figure 1-3. By

drawing diagonals, such a region can always be decomposed

into triangular regions whose area can be computed from the

FIGURE f -3

209
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usual formula. And then the area of R is just the sum of

the areas of the triangular regions.

The problem of computing the areas of regions whose

boundaries are made up of line segments is now disposed of.

We are ready to tackle one of the major problems of calculus-

the problem of finding the areas of regions with curved boundaries.

In calculus we usually work with the areas of regions

having the configuration shown in Figure 1-4. That is to say,

the regions are bounded on the

bottom by the X-axis, on the

sides by vertical lines, and

on top by the graph of some

function.

FIGURE 1-4
Thus, to find the area of a region shaped like this

we would first find this area:

2111
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then this one:

and then take the difference.

Although we are not in a position to find trig
ex

area

of any region with curved boundaries,
4n

still we C" approximate

such areas to any desired degree of accuracy.

Let's see how this

works out with a particular

example. Let's compute

the area of the quarter

of the circle x2 + 2
Y =

depicted in Figure 1-5.

You were taught in high

school that the area of

4

1/5a circle with radius r is FIGURE
l7:r2.

Since the radius of the circle is 2, the e
( a 1$ the
se%

quarter circle is
4

.22 = n. As a check we will how closely

our computed area agrees with the well-known app aYe

values of 7:

u
We see that the region is of the special corm

ig r ion

e v

described above. It is bounded by the X-axis, 141 t-tical
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lines x = 0, x = 2, and-the graph of a certain function. We

find a formula for this function by solving the equation

x2 y2 = 4 for y. Now

y = ± 4 - xL

So the function under consideration is given by

f(x) = 4 - x2 , 0 < x < 2.

Although we cannot calculate the area exactly, we can

approximate it by "rectangular configurations," a term we

shall use to indicate regions composed of adjacent rectangles.

In Figure 1-6, we have a region composed of three adjacent

FIGURE 1-6

rectangles contained in the quarter

shaded part is the amount by which the area of the quarter

circle exceeds that of the rectangular configuration.

FIGURE 1-7
circle. The area of the

In Figure 1-7, we see that the quarter circle is contained

in a rectangular configuration composed of four rectangles.

212 22 2
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The shaded area is the amount by which the total area of

the rectangles exceeds that of the quarter circle.

Figure 1-8 shows Figures 1-6

and 1-7 superimposed. The shaded

area represents the difference

between the areas of the rectangular

configuration in Figure 1-7 and

that in Figure 1-6. FIGURE 1-8

By repeating this process with a large number of

rectangles, the shaded area can be made quite small. See

Figure 1-9.

It looks as though , by using

thinner and thinner rectangles, we

can get closer and closer

approximations to the area of

the quarter circle. Let's now

actually compute some of these

rectangular configuration areas for

our quarter circle.

22 7
213
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x, )4.i xi x, 2

FIGURE 1-10
ka, xi x4 2.

FIGURE I-II

X, x1 x= xs

FIGURE I-12

In Figures 1-10, I-11, and 1-12, we have plotted

pointsx1 ,x2 ,x3 ,x4 , between 0 and 2, and we have:sketched

the corresponding inscribed and circumscribed rectangular

configurations along with the superimposed rectangles,

showing the difference of the areas.

The values of x
1

x
2

x
3

x4, in the picture were

chosen as,

= .56 x = 1.2 x = 1.6 x = 1.92
2 3 4

The areas of the four rectangles in Fig,:re 1-10 are

where

(x - 0)f(x ), (x - x )f(x ), (x - x )f(x ),
1 1 2 1 2 3 2 3

(x - x )f(x )

4 3 4

f(x) = fir-7--)77

. 214

22



www.manaraa.com

Substituting in the values we obtain for the four areas

Rect-
angle

Width Height Area

I
.56 - 0 = .56 1/4 (.56)2 = 1.92 (.56)(1.92) = 1.0752

2 1.2 - .56= .64 1/4 (1.2)2 = 1.6 (.64)(1.6) = 1.024

3 1.6 - 1.2= .4 j4 - (1.6)2 = 1.2 (.4)(1.2) = .48

4 1.92- 1.6= .32 = .56 (.56)(.32) = .1792V4 (1.92)2

Total 2.7584

Similar computations yield for the sum of the areas of

the five rectangles in Figure I-II,

(x -0)f(0) + (x -x )f(x ) + (x -x )f(x ) + (x -x )f(x )

1 2 1 1 3 2 2 4 3 3

+ (2-x )f(x )

4 4

or

.56(2) + .64(1.92) + .4(1.6) + .32(1.2) + .08(.32) = 3.3984.

The true area, 7, of the quarter circle lies between

these two estimates. That is, it lies somewhere in the

interval [2.7584, 3.3984]

215
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2.7584 3.3984

and hence the distance between Tr and the midpoint of the

interval cannot exceed half the length of the interval.

2.7584 3.0784 3.3984

That fact may be expressed in the form

1Tr -3.07841 < .32

Actually, our estimate,3.0784, differs, from Tr by less than

.064

This average of our upper and lower estimates can be

seen to be the sum of the areas of the four trapezoids and

one triangle shown in Figure 1-13.

The area is again shaded and is

seen to be much less than half

the shaded area in Figure 1-12.

0 K2. x3 X.2
FIGURE

226
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In this section, we have seen how our general principles

regarding area have enabled us to find approximations of

the areas of regions with curved boundaries. In the next

section, we will improve our method so as to find sequences

of approximations which converge to the actual area.

27
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PROBLEMS

1. (a) Draw a graph of the function y = x2 + 5.

(b) Choose four points x.
1,

x2, x3, and x
4

between 0

and 3. Draw the five rectangles under the curve

y = x2 + 5 with bases [0,xi],

[x3,x4], and [x4, 3 J.

[xi,x2], [x2°<33'

(c) Compute the sum of the areas of the five rectangles

drawn in (b).

(d) Repeat parts (b) and (c), this time with rectangles

above the curve y = x2 + 5.

(e) Estimate the area of the region in the first

quadrant under the curve y = x2 + 5 by averaging

your results from parts (c) and (d).

(f) Calculate the difference between your estimate

made in (c) and the true value, which is 24.

2. Draw a flow chart for a program to do the computations

like those in Problem I parts (c), (d), and (e) for a

function f on an interval [A,B]. The program should

read numbers xl, x2, ..., xN which partition the interval

[A,B] into N + I parts [A,x1], [xi,x2], [xN,B].

Assume that the function f is nonnegative and monotone

on the interval [A,B].

21$
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2. An Algorithm for Area

In order to devise an algorithm for calculating areas to

any desired degree of accuracy, we need only make finer and

finer subdivisions of our intervals. This leads to longer

and more tedious calculations so that we would naturally prefer

to have these calculations done by a computer.

The first step in developing our algorithm is to analyze

the error. Suppose that f is a monotone function over Lin

interval [a,b]. Let us subdivide the interval by means of

points x , x , x , x and construct the upper and lower
1 2 3 7

sums according to the method in the preceding section. In

Figure 2 -I, the total area of the shaded rectangles represents

the difference between the upper and lower sums.

a x., X2 X3 X4 X6 X. XT

FIGURE 2 -i

(b, fo3))

8 X-, XL X.3 X+ X5 X4

219 229
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In Figure 2-2, all these shaded rectangles have been slid

horizontally so as to fit, without overlapping, into a rectangle

situated above the widest of our subintervals. The area of

this rectangle is If(b) - f(a)1(x - x ) and thus our upper
4 3

sum U. and our lower sum L satisfy

U - L < If(b) - f(a)1(x - x )

4 3

In general, this can always be done prov;ded that the function

f is monotone, and we will always have

U - L < If(b) f(a)16

where 6 is the width of the widest subinterval in our par-

titioning of the interval [a,b].

Using the average of the upper and lower sums

T
U + L

2

as an approximation of our area, we have

IIT - Area <
U L 7< LW)) - f(a)1.6

Thus, the number
2
-1f(b) - f(a)16 is a bound for our

error. This bound can be made as small as we like by choosing

220 -230
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our partition so as to make 6 sufficiently small.

If we take a sequence of partitions of the interval

[a,b] where 6 , 6 , 6 , . converges to zero, then
1 2 3

!In - Areal < 1.f(b) - f (a) I -6n

so that T , T , T , wIll converge to the Area as a limit.
1 2 3

One simple way of constructing this sequence of partitions

is by successively halving the intervals of the preceding

partition, as in Figure 2-3. In this way, all the intervals

in the n th partitioning
a

of [a,b] have the same

b-alength, namely
2n

that

6n
b-a

2n

, so
2

a

3
a

4 I 1

bI a
1

1 FIGURE 2-3
We can see that in successive computations of the lower

sums, each rectangle is replaced by two rectangles with a

greater combined area.
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a b a

FIGURE 2 -4
While in s,Jccessive computations of the upper sums, each

rectangle is replaced by two rectangles with a smaller

( a ) b

combined area.

k
partition

a b 2

FIGURE 2-5
Now the sequence L , L , L ... is an increasing

1 2 3

sequence while U , U , U , ... is a decreasing sequence.
1 2 3

Moreover, Ln < Un for n = I, 2, ..., and Un - Ln converges to

( a ) (b)

zero since

f(b) f(a)0 < U - L (b - a)
n

2
n

23 2
222
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Therefore, by our completeness axiom, lim U = lim L .

n-0-c° n n->°°
n

We have °Veined this conclusion without using the assumption

that the area of the region exists.

The area of the trapezoidal

approximation to the area is

T
n

Since

Un + Ln

2

Ln Tn Un,

n th partition

a

FIGURE 2-6

the squeeze theorem assures us that the sequence T T T
1' 2' 3'

converges to the common value of lim L and lim U
nn-'°° n n4-c°

n

In computing Ln and Un, we will let h represent the width

of the subintervals. (They all have the same width, namely,

b-a

2
n ) The values of L

n
and U

n
are then given by

2n-1

L
n

= f(a)h + E f(a + kh)h
k=1

Un =

2n-1E f(a + kh)h

k= I

n3

+ f(b)h
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and we can make use of the distributive law to write L and
n

U
n

in the form

2
n
-1

L
n

= h[f(a) + f(a + kh)]

k=1

U
n

= h[f(b)

2
n
-I

k=1

f(a + k.h)]

Introducing a variable SUM to stand for

2n-I

SUM = f(a + kh)

k=1

we have the formulas,

L
n
= h(f(a) + SUM), U

n
= h(f(b) + SUM).

The computation of Ln

and U
n

will thus be

accomplished by the

process shown in Figure

2-7. The flow chart

for the entire process

of generating a sequence

of upper and lower sums

and trapezoidal sums is

seen in Figure 2-8.

224

<- a
5UM 4- 0

I E-

L L+I
L= 2n

X 4-- x+ h
SUM F Sum+-f(X)

LN h X (SUM +.f(a))
UN +- h x (SUM +-F (b))

23
F.

Figure 2-7
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Variables NUM (=2n) and

FA (=f(a)) and FB (=f(b))

have been introduced to reduce

repeated computation. You

should especially note how h

gets its

by being

successive

repeatedly

values

halved.

FA 4- f(,)
FB f

-A(b)h b
err-4- h irg
NUM 4- I

1/2

The final output

is guaranteed to

the true area by

input value of E.

value of TN

differ from

less than the

The program works for de-

creasing functions as well as

increasing functions, except

that in this case the upper

SUMS will appear as the LN

outputs and the

the UN outputs.

see why this is

lower sums as

You should

the case.

In Figure 2-9, we see a

variant of Figure '2-8 which

will reduce the computing

time by half. The basis

err

h 4- h pis

NUm NU
SUMO 0 /A
err err/

x
5Jejr---A!"1-

Ni L74,0- 'Nfr

23 ;
225

Figure
2-e
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for this improvement is as

follows. In executing the

loops of boxes 5 and 6 of

Figure 2-8, the value of f(x)

is computed for 2n - I

different values of x. However,

2
n1

- I of these values have

already been computed and summed

in the previous pass through

the loop. The variables TOT

and d(= 2 x h) are introduced

to eliminate this source of

inefficiency. How the re-

vised flow chart works is left

for you to discover for your-

self.

7, 216

FA f (&)
FES < ;(b)
h*-b- a.
err4-h.IF-B-F-AI/2d4-zxh
NUM E-1
TOT 0

N4-1
N4- NH

err< Z'
d/2

h h/2
X a-h
SUM E 0
err <---err/2

LEL+1
F*

5

> NUM

6
r

X E- d+x
SUM 4-- SUM -i-f(x)

7
TOT<TOT/Z+5UM xh
LN 4-TOT -1-11*F A
UN ET0T+ hxF B
TN ÷- (LN +UN)/2
NUM -NUM x

8
N,LN,UN;IN , err

23

Figure 2-9
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PROBLEMS

I. Write a program for the flow chart of Figure 2-8 or

Figure 2-9. Run this program with the function in the

previous section.

f(x) = V4 - xz, a = 0, b = 2

Remember that the true value of the area is n. Compare

your final value of TN with tabulated values of n.

2. Write a flow chart for computing a trapezoidal approxima-

tion T to the area under the curve y = F(x) on the

interval [A,B], where F is a monotone function which is

nonnegative on [A,B]. First have the program calculate

how small the subintervals must be in order to guarantee

that T will differ from the true area by no more than

c. Then calculate T using equal subintervals of

appropriate width.

3. Write the program flow charted in Problem 2 and use it

to approximate the area under each of the following

curves. Use c = .001.

(a) f(x) = V; on [0,1]

(b) f(x) = V; on [1,2]

(c) f(x) = 17(-177 on [0,1]
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(d)

(e)

f(x)

f(x)

=

=

sin x

sin

on [0,3]

on [(:),Tr]

(f) 'f(x) = x2 on [0,1]

(g) f(x) 1 on [0,1]
x2 4.

(h) f(x) = cos x on [0,1]

(i) f(x) = cos x on [(:),i]

(j) f(x) = x3 on [0,1]

23R
228
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3. Non-Monotone Functions

The process we have developed suffices to compute the

area under the graph of any monotone function. In a certain

sense, this will suffice for our needs, because in under-

graduate mathematics virtually all the functions we encounter

are either monotone or "piecewise monotone". By "piecewise

monotone" we mean that the domain can be divided up into a

number of intervals of mono-

tonicity as depicted in

Figure 3-I. Now the area under

the curve can be obtained by

computing separately the areas

under the monotone pieces and

adding as indicated in Figure 3-2.

In another sense, however,

the situation is not quite

satisfactory. There are two

reasons for this. First, sums

and products of piecewise

monotone functions are not

necessarily piecewise monotone

12 3 3

Figure 3-I

Figure 3-2

Figure 3-3
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(though we will not give an example of such a situation

here). This would lead to the necessity of qualifying some

of the theorems we wish to prove later on. Secondly, even

though a function may be piecewise monotone, it can have a

great many maxima and minima (as in Figure 3-3), and the

problem of actually locating these points may be a practical

impossibility.

There is, however, another means of controlling error in

estimating areas which does not require the ability to locate

the maxima and minima. For this purpose, we will relax our

definitions of upper and lower sums (i.e., make them more

general).

Looking at Figure 3-4(a), we see the graph of a function

f with the area under the graph shaded. In Figure 3-4(b), we

see a rectangular configuration including the area under the

graph. We will call the area of such a region an upper sum.

In Figure 3-4(c), 'we see a rectangular configuration entirely

contained in the region illustrated in Figure 3-4(a). We

will call the area of such a region a lower sum.

If we denote the heights of the rectangles in Figure

3 -4(b) as M
1

, M
2

, M
7
and the heights of those in Figure

3-4(c) as m , m , m , then we see that the upper sum
1 2 7

24-0
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a-xo )4., x2
( a )

x. x, x, b=x,

aaxo X, X2. X3 X4. X. X6 bx,
Cc)

Figure 3-4

X, X3., x3 X4 X5-

(b)
x6 b= x7

x, )(a. x.3 X4 x, K6 b. x7
Cd)

U and the lower sum L are given by the formulas

7 7

EM
k
(x

k xk-1) and S = mk(xk xk_1).

k=1 k=1

In Figure 3-4(d), the rectangles in Figures 3 -4(b) and

3-4(c) have been superimposed and the shaded area represents

the difference U - L . The heights of the shaded rectangles

in the figure are

M - m , M - m , ..., M - m .

1 1 2 2 7 7

231
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It, as in Figure 3-4(d), each of these heights is < 2E, then

we could as in Figure 3-5(a) "drop each of the shaded

rectangles down to the bottom of the elevator shaft", and

then we see in Figure 3-5(b) that the whole configuration

fits inside a rectangle

x, x.z x3 x, xS x6 b.x.
(a)

a (b-a)
fib)

Figure 3-5

of area 2E(b - a). That is, U - L < 2E(b - a). And now,

since the area under the curve, A; lies between L and U,

U L
L+U L U

2.

A A

L U L L
2

we observe that A lies within a distance (U L)/2 of the

average (L + U)/2 of L and U. That is,

IA - L
2

Ul <
U

2

L
< E(b - a).
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In this way, we can make the error in estimating the

area as small as we like provided that our function has the

property that for every e > 0 we can find a partition

x
0

, x
1

, x2, xn and upper and lower bounds, Mk and mk,

on each of the subintervals so that for each subinterval

we have

M
k

- m
k

< 2E

But what functions have this property? How are we to

find such partitions and such numbers Mk and mk? We address

ourselves to these questions a little later on.. What we need

for now are the generalized concepts of lower and upper sums.

233243
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4. Integrals

The process we have developed for computing areas has

many applications. The mathematical name for the limit found

by this process is "the integral from a to b of f", written

jrbf(x)dx
a

(The reason for the "dx" will appear later. At present consid-

er it merely as part of the symbol indicating integration.)

We no longer require that the function f be positive over the

interval [a,b]. We will be

able to find integrals of

functions such as that in

Figure 4 -I.

The area interpretation

of such an integral would be

the shaded area above the

X-axis minus the shaded area

below the X-axis, as shown

in Figure 4-2.

However, it is not

always profitable to think

of these integrals In terms

FIGURE 4-1

FIGURE 4-2



www.manaraa.com

of area.

Below we give a formal definition of the integral. You

will see that this definition coincides with what we have

been doing in finding areas.

Definition: Let f be a function defined on an interval

[a,b]. Suppose there is a sequence Ln, n = I, 2 , P

of lower sums over this interval and a sequence Un,

n = I, 2, 3, of upper sums with lim (Un - Ln) = O.
n÷co

Then the common limit, L, of these two sequences is

denoted as

f(x)dx
a

Up until now we have been using the assumption made in

the first section of this Chapter that the regions under

consideration have areas. On the basis of this assumption,

it is easy to see that if there exist sequences satisfying

the conditions in this definition, then they must converge

to the area, A, under the curve. For then we have

L
n

< A < U
n

for all integers n, and since lim (U
n

- L
n

) = 0,
nco

we have also lim (U
n

- A) = 0 and lim (A - L
n

) = O.
n÷o, n÷c.,

In order to make our development rigorous, it is neces-

sary to free ourselves from the assumption that regions under

235 :24 .3"
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the graphs of functions have areas. However, once this

assumption is dropped, our definition of the integral is open

to serious objections. First, it is not clear that sequences

satisfying the conditions in the definition necessarily con-

verge. Second, it is not clear that another pair of se-

quences L
n

and Li n' satisfying the several conditions, but

based on different partitioning of the interval [a,b], will

necessarily converge to the same limit. These objections

are disposed of in Appendix B to this chapter. The discus-

sion given there is easy-going and informal but somewhat

lengthy. We hope that the student will read this discussion

now or at least before leaving this chapter in order to

appreciate the simple steps necessary to validate the above

definition; it makes our theory of integration dependent

only on the field, order, Archimedean, and completeness

axioms for the real number system.

Although we now allow the possibility that f may assume

negative as well as positive values, we will show that we

may nevertheless confine our discussion to positive functions.

To see that this is so, suppose that f assumes both positive

and negative values in the interval ra,b3. Let -K be a lower

bound for f in the interval [a,b] so that

g(x) = f(x) + K > 0 for x in [a,b].
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Let L = E m.(x. - x.
1-1

)

i=1

be a lower sum, for f in [a,b]. (Here some or all of the m.

may be negative, but let them all be taken > -K.) Taking

m.' = m. + K, we see that

L' .2",:m;(xi x,_1)

i = I

is a lower sum for g on [a,b]. Next we calculate

L' = 2:m;(xi - xi -1) = E (m. + K)(x. - x.
1-1

)

1=1 i=1

= Emi(xi - xi -1) + E K(x. - xi -1)

i=1 i=1

= L + K(b - a)

[Conversely, if we had started with L' being given, then

taking mi = mi' - K, we could have computed the lower sum

L so that L = L' - K(b-a).] Similar results for upper sums

are obtained by replacing the mi and mi' by Mi and MI'. Here

we obtain U' = U + K(b-a).

Now if we have sequences L
n

and U
n

for f, then the

sequences Ln' and Un' constructed according to the above rule

satisfy

Uni Ln = [11
n

+ K(b a)]

= U - L
n .,-n

:
231

L
n
+ K(b - a)]

:24 7
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Consequently, if either of the sequences Un - Ln or Un' - Ln'

converges to zero, then both do since they are the same.

Moreover,

ff(x)dx = Jim Ln = lim [Ln' K(b - a)]
a n--

= lim L
n

' - K(b - a) = g(x)dx - K(b - a).
n+0. a

Accordingly, we have the following recipe for finding the

integral of a function f which assumes negative values:

(I) Find K so that f(x) + K is > 0 throughout [a,b];

(2) Construct g by g(x) = f(x) + K;

(3) Calculate the integral jr g(x)dx.
a

(4) Subtract K(b-a) from this result to find f f(x)dx.
a

This is something we never need to do in practice; it

is introduced solely for the purpose of justifying the use

of methods which apply only to positive functions in proving

facts about integrals. We give one example of finding such

a number K merely to guarantee that our meaning will be clear.

Example. Let f(x) = 3x + 5 sin x. Find a number K so that

g(x) = f(x) + K is > 0 throughout the interval [-4,6].

Solution: Throughout the interval [-4,6], the inequalities

y

248
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hold so that

whence

Therefore,

x > -4 and sin x > -1

3x > -12 and 5 sin x > -5

3x + 5 sin x > -17.

g(x) = f(x) + 17 = 3x + 5 sin x + 17 > 0

throughout [ -4,6].

Before going on we pause to briefly consider the question:

What functions have integrals? That is, for what functions

do there exist sequences of lower and upper sums Ln and Un

with lim
n

- L
n

) = 0? We have already seen that such
n.03

sequences can be found when f is monotone. There is no need

in this course for knowing the most general class of functions

for which integrals exist, but we will return to this question

later in this chapter.
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PROBLEMS

I. Repeat Problem 1 of Section 3-1 with the function
3

y = x2 - 5. For part (f), evaluate f (x2 - 5)dx
3

assuming that jr (x2 5)dx = 24.
0

2. Suppose that K is a number and that f is defined on an

interval [A,B] by f(x) = K. Show that jr f(x)dx = K(B - A) .

A
Interpret this result geometrically in the case K > 0.

259
240
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5. Theory of Integration

We next present several important theorems concerning

integrals. In order to streamline the statements of these

theorems we adopt the convention that the integrals on the

right side of the equal sign are given to exist. The theorem

then assures us of the existence of the integral on the left

as well as the stated equality. We also assume that a, b,

and c belong to an interval in the domain of f.

Theorem I. !f a< b < c then

jrc

f(x)dx = jrbf(x)dx + Pf(x)dx
a a

Proof: Since f(x)dx and jr f(x)dx are given to exist
a

there are sequences Ln' and Un' of lower and upper sums over

[a,b] and sequences Ln" and Un" of lower and upper sums over

[b,c] with

lim (U
n

- L
n
1) = 0 and lim (U

n
" L

n
") = 0 .

We define lower and upper sums Ln and Un for f over [a,c] by

Ln = L
n

' + Ln" and Un = Un' + Un"

241 23i
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as illustrated in Figure 5-I where Ln and Un are respectively

represented by the entire shaded areas in Figures 5-I(a) and 5-I(b)

Now we see that

a (b)

Figure 5-I

Un - L = (U
n

+ U
n
") -

n
+ L

n
")

= - Ln 1) + (U
n
" - L

n
")

wheice by the theorem on the H.-nit of the sum,

lim (U L ) = lim (U
n

- L ') + lim (U " - L ") = 0 + 0 = 0n n n n n

This shows than that a sequence of the desired form exists

so that jf(x)dx exists. As for the value of this integral
a

(working with upper sums, although lower sums wou!d do as well)

2 5 ?
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f(x)dx = lim U
n

= lim (U
n

1 + U
n
")

a n÷co nip

= lim U
n

' + lim U
n
"

con÷ n÷co

jr f(x)dx + jrcf(x)dx.
a

a

Definition I. jr f(x)dx = 0
a

Definition 2. If a > b, we define

fb
a

f(x)dx = - jr f(x)dx.
a

Theorem 2. If C is a constant then

jrbCf(x)dx = cjr f(x)dx
a a

Proof: Consider '-he case that C > 0. Let L
n

and U
n

be lower

and upper sums for f on [a,b] with lim (Un - Ln) = 0. For each
n÷,x,

value of n, Ln and Un are expressible in the form

n

Ln =

k

mk (x
k

- x )

k-1
=

Now we have

and

n

Un = Mk (x
k

x
k-1

).

k =1

m
k

f(x) < M
k

for x in [x
k -1'

j
k-1' k
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whence

Cm
k

Cf(x) < CM
k

for x in Ex
k-1'

x
k
].

(For negative C these inequalities are reversed.) Hence Cm
k

and CM
k
are lower and upper bounds for f on Ex x

k
], and

therefore

n

CL
n

= Z Cm
k
(x

k
- x )

k-1
k=1

and

n

CU
n

= E CM
k
(x

k
- x )

k-1
k=1

are lower and upper sums for Cf on [a,b]. Now

lim (CU
n

- CL
n

) = C lim (U
n

L
n

) = (C)(0) = 0

Jr

b

assures us of the existence of Cf(x)dx.
a

Finally,

Jr Cf(x)dx = lim CU
n

= C lim U
n

= C ff(x)dx.
a a

Lemma. If L' and U' are lower and upper sums for f over [a,b]

and L" and U" are lower and upper sums for g over [a,b], then

L = L' + L" and U = + U"

are lower and upper sums for f + g over [a,b].
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Proof: We will show this only

for lower sums. In Figure 5-2(a)

and 5 -2(b) we illustrate lower

sums for f and g over [a,b].

Figures 5-2(c) and 5-2(d) are the

same except that vertical lines

have been drawn at all partition

points of both partitions. This

shows that L' and L" may be re-

garded as lower sums with respect

to the same partition. Let us

denote this partition consisting

of all the partition points by

a = x, , , xn= b
0 2 n -1

and we let the heights of the

rectangles over the subintervals

in Figure 5-2(c) be identified

as m 1, m 1. m
n

' and those in
1 2

Figure 5-2(d) as m ", m ", m
n
".

1 2

111116 A
kN&

(a)

Figure 5-2

Now we see that mk' < f(x) and m
k
" < g(x) for x in Ex k-1'

x
k

Adding, we get

m f(x) + g(x) for x in [xk_i, x
k
]
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Hence mk = mk' + mk" is a lower bound for f + g on Exk_i,xkl and

the sum

L = m
k
(x

k xk-1)
k=1

n

(mk' + mk")(xk - x )k-1
k=1

n
n

= m
k
'(x

k
- x ) + m "k=1 (xk-1 k k xk-1)

k=1

= L' + L".

The result for upper sums is proved in the same way.

Theorem 3. (Integral of the sum)

Jrb
[f(x) + g(x)]dx = f(x)dx + jr g(x)dx.

a a a

Proof: Let L
n

' and U
n

' be sequences of lower and upper sums

for f over [a,b], and let L
n
" and U

n " be sequences of lower

and upper sums for g over [a,b] with

lim (1.1
n

- L
n
') = 0 and lim (U

n
" - L

n
= 0.

2,4S
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Now the preceding lemma allows us to define a sequence of

upper and lower sums for f + g over [a,b] by

Ln = Ln' + Ln" and Un = Un' + Un" for n = 1, 2, 3, .

Since

Un - Ln = (U
n

' + U
n
") (L

n
' + L

n
")

= (U
n

' L
n
') + (U

n
" L

n
")

we can see that

lim (U
n

- L
n

) = lim (U
n

' - L
n
') + lim (U

n
" - L

n
") = 0 + 0 = 0.

n.4-00 n-40.

b

This shows that f [f(x) + g(x)]dx exists.
a

Consequently,

[f(x) + g(x)]dx = lim Un
a r1.4-co

lim (U
n

' + U
n
")

= lim U
n

' + lim U
n
"

n.4-co n.4-.0

b b

. jr f(x)dx + jr g(x)dx
a a
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It might be thought that Theorems 2 and 3 would be of

little practical value from the computational point of view

as they say nothing about bounds on the error.

However, if we assume we have shown that I = f
3
f(x)dx = 2.377

1

with error < .002 and that I = I
o

3
g(x)dx = 1.162 with error

2

.005, then

2.377 - .002 < I < 2.377 + .002
1

I.162 - .005 < I < 1.162 + .005
2

3.539 - .007 < I + I <
1 2

.'171 + .007

Then, f 3
(f(x) + g(x))dx = 3.539 with error < .007. Thus, in

general when approximating the integral of the sum of two

functions, we can add the approximations found for the functions

separately and add the error bounds.

Similarly, with the conditions as above I = fo34f(x)dx =41
3

satisfies 4(2.377 - .002) < 41 < 4(2.377 + .002)
1

or 9.508 - .008 < 41 < 9.508 + .008.

Again we see that in approximating the integral of a constant

multiple of a function, we multiply the approximation of the

original function by the constant and multiply the error bound

25a
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for the integral of the original function by the absolute

value of the constant.

The remaining theorems of this section find several

applications in Section 9 of this chapter.

Theorem 4. If a < b and f(x) > 0 for all x in [a,b], and if

the indicated integral exists, then

Jf(x)dx > 0.

a

Proof: Clearly each of the upper sums Un in the definition

of the integral is greater than or equal to zero and hence

fb

f(x)dx = I im Un > 0
a

If the inequality f(x) > 0 in Theorem 4 were strengthened

to f(x) > 0, then we could also replace the inequality in

the conclusion by a strict inequality. This is difficult to

prove in full generality and the proof will be omitted here.

Theorem 5. If a < b and f(x) > g(x) for all x in [a,b], and if

the indicated integrals exist, then

J
f(x)dx > g(x)dx.

a a

Proof: Using the theorem on the in+egral of the sum, we have

249
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Jr f(x)dx = Jr g(x)dx + Jr [f(x) - g(x)]dx
a a a

and the last integral on the right is > 0 by Theorem 4.

b+h
Theorem 6. jr f(x - h)dx = jr f(x)dx

a+h a

Proof: As illustrated in Figure 5-3, the graph of f(x - h)

over the interval [a + h, b + h] is merely a shift to the

Al NW()
4,79L..-11

§ lk\\NL
a b a+h

Figure 5-3
b+h

right of the graph of f over [a,b]. Moreover, from the

congruence of the shaded regions in this figure we see that

each lower sum for f(x) over [a,b] is also a lower sum for

f(x - h) over [a + h, b + h]. Similarly, for upper sums.

Thus sequences Ln and Un of lower and upper sums for f(x)

over [a,b] with lim (U
n

- L
n

) = 0 are also sequences of lower

and upper sums for'f(x h) over [a + h, b + h]. Thus,

b+h
Jr f(x)dx = lim U

n
= jr f(x - h)dx.

a a+h

250
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PROBLEMS

Approximate each of the following integrals and specify

an error bound in each case. Use the results of Problem

3 of Chapter 3, Section 2.

(a) 11 347 dx
0

jr7/2(b) -2 sin x dx
0

cc)

( d )

(e)

(f )

12 /TT dx

jr(x2
- ,,) dx

a

(x3
11

) dx
0 x24.1

12 /T dx
O

(g) 1f dx

-1

(h)

(i )

1,0

41sin (x + 1--)dx
2

/2
(sin x + cos x)dx

0

j
7/2

(j) (sin x - 3cos x)dx
0

2
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6. Unicon Functions

For the class of monotone functions we have succeeded

in demonstrating the existence of integrals and in approximat-

ing these 'ntegrals with bounds on the error. In

Section 3 we generalized the definition of lower and upper

sums so as to pave the way for the consideration of nonmono-

tone functions. We are ready to introduce another class of

functions, the unicon functions, which we will show to have

integrals which we can approximate to any desired degree of

accuracy.

The idea of a unicon function is quite simple to understand

if we think of it in terms of control of error. Suppose we

have a function f and we want to compute the values of f(x)

for several values of x all in an interval [a,b]. Perhaps

these values of x are determined experimentally or perhaps

they are subject to computer round off, but anyw,,' :--ppose

they are subject to error. We would like to know that a

small error in the value of x will produce a correspondingly

small error in the value of f(x).
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)

X1 XL

Figure 6-1

Putting it slightly differently, suppose that the maximum

error we can permit in our computed values of f(x) is some

positive number c; is there some tolerance, 6, so that when

the error in the value of x does not exceed 6 then the error

in f(x) will not exceed c? That is, can we find a number 6

so that

1f(x ) f(x )1 < c whenever lx x
2

1 6 ?
1 2 1

This situation is illustrated in Figure 6 -I for a particular

choice of the numbers x and x . Here the tolerances c and
1 2

6 are represented by the lengths of the `heavily drawn intervals.

If the answer to this question is affirmative no matter

how small the positive number c may be, then we say that f

3c3
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is unicon over the interval [a,b]. Putting this as a formal

definition, we have:

Definition. A function f is said to be unicon ov,?r the

interval [a,b] provided that for every positive number

e there can be found a positive number S so that

(f(x ) f(x )1 < e whenever x and x are in [a,b] and
1 2

_
1 2

IX
1

x2( < S.

Most familiar functions are unicon. We give a few

examples. In these examples it will be understood that x

and x are always taken to be in the interval [a,13].
2

Example I. f(x) = 3x where [a,b] is arbitrary

(f(x ) - f(x )1 = I3x - 3x I = 3Ix - x
1 2 1 2 1 2

Thus by choosing S = e/3, we see that if Ix - x I < S then
2

(f(x ) - f(x )( = 3Ix x I < 3.(5 = 3-e/3 = e.
1 2 1 2

Example 2. f(x) = x3 where [a,b] is arbitrary

ff(x ) f(x )1 = Ix 3 31
1 2 1 2

= 1(x - x )(x 2+ x x + x 2)1
1 2 1 1 2 2

= 1x - X l1X 2 + X X + X 21 < IX - X 1.3k2
1 2 1 1 2 2 1 2

2541
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where k = max (la!, ib(). Thus letting 6 = e/3k2, we see

that if Ix - x 1 < 6 then
1 2

(f(x ) - f(x )i < ix - x I3k2 < 6.3k2 = (e/3k2)3k2 = E.1 2 1 2

Example 3. f(x) = sin x where [a,b] is arbitrary.

The result is obvious from the following diagrams of the unit

circle

Figure 6-2

We see that(x - x ( is the length of the arc PQ which is
1 2

greater than the length of the chord PQ since a line segment

is the shortest path joining its endpoints. Furthermore the

chord PQ is longer than the segment QR since the hypotenuse

of a right triangle is longer than either of its legs. Thus

we have

'sin x - sin x I= length of QR < length of PQ
2

< length of PQ = Ix
1

255
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Thus, iaking 8= e we see tt.at if Ix - x
2

6

!sin x - sin x ! < Ix x I = 6 = E.
1 2 1 2

The same method applies when the angles are in different

quadrants. Note that we are using radian measure for angles

as is always done in calculus for very good reasons which

will eventually become apparent. The same argument works

equally well for the cosine function.

Example 4. f(x) = where 0 < a < b.

If(x
1

) - f(x
2

)1 =
x x

1 2

x - x
1 2
x x

1 2

Ix x

x x21
I

< 1 2

1 x x
1 2I

a2

Thus, taking 6 = a2E we see that if Ix x I
< 6 then

2

Ix -x I

1 2
<

E
E.

a2 a2 a2

Example 5. f(x) = $x
r- where 0 < a < b

(This is a little bit tricky. It can be shown much more

easily if a is given to be greater than 0.)

2 6.
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Let c and d represent numbers greater than or equal to

zero and check the string of inequalities:

(c - d)2 = Ic - di-Ic - di < Ic - diic + di =

whenCe by taking square roots,

Ic - di < ic2 d2i.

Now we use this inequality to verify that

c2 - d21

1 f(x ) - f(x )1 = I >77 71 < X -x(
1 2 1 2 1 2

(We took c = /Tr- and f: = / ). Hence, taking 6 =e2 we see
1 2

that when ix - x 1 < 6 then
1 2

lf(x ) - f(x )1 < "Ix - x 1 < /6 = = c.
1 2 1 2

Exempla 6. As an example

of a function which is not
< 24
4/1

018-
unicon, consider the "post-

Lt.
age function", P, which 012.-

gives the number of cents I-- 6

of postage as a function of

the weight of the letter

according to the formula,

257
ZO7

1 2 3 4. OUNCES

POSTAGE FUNCTION , P

Figure 6-3
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"six cents per ounce or fraction thereof." This function is

graphed in Figure 6-3. To see that this function is not

unicon on the interval [0,4], note that we may choose x and

x
2
as close together as we like with x

1

< 2 < x2. For example,

take x
1

= 2 - i and x
2

= 2 + Tic for some large integer n. Then,

P(x ) = 12 while P(x ) = 18.
1 2

Clearly if now c < 6, we will not be able to find a 6 > 0 so

that

IF(x ) - P(x )1 < c whenever Ix - x
1 2 1 2

< 6

It is evident that whenever such "jumps" occur in the graph

of a function, the function cannot be unicon.
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PROBLEMS

I. Gold leaf comes in square sheets in various sizes up to

10" on an edge. What is the maximum tolerance of error

in measuring the length of an edge in order that the

error in the computed value of the area should never exceed

(a) I square inch?

(b) .1 square inch?

(c) .01 square inch?

2. Suppose f is defined on [0,1] by f(x) = 0 or I accordingly

as x is rational or irrational, respectively. Prove that

f is not unicon on [0,1].

3. Suppose c < d < O. If f(x) = X on [c,d], prove that f

is unicon on [c; d].

4. Prove that if f is unicon on [a,b], and if g(x) = f(x + c),

then g is unicon on [a - c, b - c].

5. Use Problem 4 and Example 3 to show that the cosine

function is unicon on any closed interval.

269
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6. Find an expression for 6 in terms of c such that

ix 2 - x2 < whenever Ix - x I < 6 and x
1 2 1 2 1

and x

are in the interval:

(a) [0,3]

(b) [-10,1()]

(c) [a, b]

27

2



www.manaraa.com

7. Unicon Functions and Integrals

We are ready to show that unicon functions are integrable

and to approximate their integrals with guaranteed error bounds.

First we make the following simple observation.

Theorem I. Suppose f to be defined on [a,b]. Suppose that

for each e > 0 there are lower and upper sums L and U with

U - L 2e (b - a). Then jr f(x)dx exists.
a

Proof: For each positive integer n we let Ln and Un be upper

and lower sums with Un - Ln < 3(b - a) so that lim (1.1
n

- L
n

) = 0.

Thus, by definition jr f(x)dx exists.
a

Accordingly we will now show, for a function f unicon

over [a,b],that we can find for any e 0 lower and upper suns

L and U with U - L < 2e (b - a).

Suppose that function f, i.lustrated in Figure 7 -I,

is unicon in the interval [a,b]. Suppose that a particular

value is chosen for e and a value of 6 has been found so that

two numbers in [a,b] which differ by no more than 6 will have

ro

261
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Figure 7-I

I
Figure 7-2

functional values which differ by no more than E. Let these
values of e and 6 be represented by the lengths of the segments
in Figure 7-2.

Next consider two numbers, c and d, in [a,b] with c<
lc - dl < 6 . Select a number E in the interval [c,d] as
shown in Figure 7-3(b). Since any number x in [c,d] lies

C,0
8

Ed c e d c ed c e d c ed c e d
(a) (b) (c) (d) (e) (f) (g)

Figure 7-3
within a distance d of E,it follows that f(x) will lie within

d and

a distance e of f(E). That is,

f( - <f(x) < f(E) + E

In other words, the numbers

m = - e and M = + e

for x in [c,d].

2$2
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are lower and upper bounds for function, f, over the interval

[c,d]. This is exemplified in Figure 7-3(c) by the fact that

the graph lies entirely between the horizontal lines. Since

f(E) is the average of m and M

m + M f(E) + f(E) + e 2f(E) f(E)
2 2 2

it is clear that the shaded area in Figure 7-3(d) is the

average of those in Figures 7-3(e) and 7-3(f). In Figure

7-3(g) it is seen that the rectangle representing the different

of the area in 3(f) and 3(e) has height exactly 2c.

With this preparation, we see that if we partition the

interval [a,b] so that each subinterval has length no greater

than (5 then the above observations hold in each of these sub-

intervals. Thus, in Figure 7-4(a) we have partitioned [a,b]

into six subintervals and chosen in Figure 7 -4(b) (according

to some unspecified rule) numbers Ek in each of the subintervals.

a..x0 x xx x, x4 xs b a-xo

(a)

r

Figure 7-4

213

273

tax= tpt4 x4sx, texeb
(b)
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In each subinterval we have lower and upper bounds

m
k

and M
k
given by

m
k

= f( ) - e M
k = f(k) + e k = 1, 2, ..., 6.

The lower and upper sums

6

L = mk (x
k

- x )

k =1

and

6

U = M (

-k.Xk xk -i)

k=1

formed by use of these bounds are represented by the shaded

areas in Figure 7-5(a) and 7-5(b).

(a) Figure 7-5 (b)
The average of these upper and lower sums is

6

S = f(Ek)(xk - xk_i)

k=1

which is represented by the shaded area in Figure 7-6(a),

while the difference of the upper and lower sums represented

in Figure 7 -6(b) is exactly 2e(b-a).

264
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Figure 7-6

(b)

According to Theorem 1 of this section this shows that

b

I = if(x)dx exists. And furthermore, since
a

S = (U + L)/2 and L < I < U

(b-a) c (b-a) E

we see that the sum

approximates the

(b-a)e.

L

S=
k.i

f(C
k
)(x

k
- x )

k-1

b

integral 4f(x)dx with error not exceeding

This error esT;mate is valid so long as the lengths

of subintervals do F.ot exceed 6 where 6 is so chosen that

1f(x ) f(x )1 < E for all numbers x and x in [a,b] with
1 2 1 2

Ix x I < 6
2

This provides the basis of a computer algorithm for

approximating integrals. For this purpose it will u:,ually be

265
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convenient to take all the -hintt:, !els with the same length.

Among the common rules fc :hoice of the E
k

are;

k-
+ x

ki) the midpoint rule, Ek
1

2

the left-end-point rule, Ek =
xk -1

;

iii) the right-end-point rule, Ek = xk.

Since the approximations obtained by the left -'and right -
b

end point rules both differ from 4f(x)dx by less than (b-a)e,

so also does their average. This average is the now familiar

"trapezoid rule" for approximation of integrals. In the

following exercises we will compare estimates made by the two

end-point rules, the midpoint rule and the trapezoid rule.

2 7
2U
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(b)

(c)

PROBLEMS

Draw a flow chart for computing and printing

approximations to jr F(x)dx by the end-point

rules, the midpoint
A rule, and the trapezoidal

rule. Each of these four approximations is to be

computed and printed for N = 2, 4, 8, 16, .

-
partitions until

A < DELTA, where DELTA i5 a

positive number to be read.

Write the program flow charted in (a) and use it to
1

ir

4

obtain approximations to dx. Use
x 2 + I

DELTA = .0001. 0

With F(x) =
4

, show that
X2 +

IF(xl) - F(x2)I < 8Ix1 - x2I whenever

x x
2

E [0,1].

(d) Show that each of the four approximations obtained

for the largest value of N in part (b) is in error

by < .0008.

(e) What was the smallest value of N for which the

left-end-point approximation obtained in part (b)

was in error by < .001? the right-end-point

approximation? the midpoint approximation? the

trapezoidal approximation?

277
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2. Use the program written in problem I to approximate each
of the following integrals:

(a) + 1 )dx
2 (x

x2

2

(b) f >VT-7F dx
1

( c )

(d)

jr3 x2 + I

x - I

dx
2

2

2)dx

3. Judging from your results in problem 2, whirh of the fc,Jr

methods is best? Try to compare quantit,i-ively the lr;:ne;_oid

rule and the midpoint rule, by examin'ng their c:rvergene

rates in problem 2.

268
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8. Formulas for Inte3irals

So far we have evaluated integrals only by computer

methods. With really difficult functions we shall have to

rely on computation and approximE. ion of the limiting values,

although in many cases representations in forms other than

integrals (e.g., infinite series) are available which yield

answers easier to evaluate. We shall see some examples of

this before too long.

....
However, there is a small but import3n1 class of functions

for which the integrals can be found ex.ac4 without approxi-

mation. This class of functions includes, for example, all

polynomials and the functions sin x and cos x and thousands
2

more. However, for such a simple example as
sin x

dx

we can still only approximate the value.

We will show several examples in increasing order of

ulty. All examples will have the same format. We

will always integrate from 0 to b. We will always compute

the sum S
n
retained by dividing the interval into n equal

parts so that each subinterval has length b/n. Moreover,

0 b 2b 3b 4b (n-1)12 L4/ = b

TT n

Figure 8 -I
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the right -hang -end 'oint of the i-th subinterval wi!1 always

be taken as The sum

S
n

= f(c,)(x, - x.
-1

)

1

i=1

therefore reduces to the form

n

f (Lb) bSn =
n n

1=1

The factor b/n (which has the same value for all values of i)

can be factored out by means of tte distributive property

giving the even simpler form

=
n n

i b
f( )

i =1

For several different functions we will find the exact value

of this sum 1:,d then take the limit as

Example I. f(x) = 1

n

Here Sn = n

= I
so that

. The sum of n one'_ is simply n

Sn = b
n = b

210
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We now have

lim Sn = I im b = b.

n-- n.+0.

Of course this result is not very surprising as it merely

gives us b as the area of a rectangle of length b and height I.

Sti II, it is reassJring to see

that our method g 'es correct
f(x)=1

results in cases where we

already know the answer.

Example 2. f(x) = x

b 2 n

Here S = b (

ib
)

n n n n2 =I

Figure 8-2

The sum i = I + 2 + 3 + 4 + + (n-1) + n

1=1
is frequently met with in high-school mathematics. It is

most easily evaluated by the device:

sum = I + 2 3 4 + (n - I) + n

sum = n + (n - I) + (n - 2) + (n - 3) + + 2 + 1

2(sum). = (n + i) + (n + I) + (n + I) + (n + I) + + (n + I)

Hence 2(sum) = n(n + I) whence

211
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Now

so that

n

n(n+1)sum = 2: i =
2

= 1

n

b 2
0 -, E i

b2 n(n+1) b2
(1 +

n1)r, n2 n2 2 2

1=1

Jr

b
b2xdx = lim S

n
= lim --(I + 1) =

tal.

2 n 2
0 n-4-0. n-0...

Here again the result come as no surprise as it tells

that the area of an isosceles right triangle with a leg of
b2length b is

Figure 8-3

Now for our First non-trivial example, a region with

a curved boundary.

xample 3. f(x) = x-

Figure 8-4
212 28?
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S
n

b3

n3
1=1

i2

n

To find the sum i2 12 + 22 + 32 + n2 we resort to

1=1

a little trick. We check that

2
,

(i +
21)

3
-

1/ 113 I

]ki 17

Substituting I, 2, 3, 4, ... n in this formula we find the'

Now we observe that all the crossed out terms appear once

positive and once negative and so cancel out. Adding up

what is left, we have

213 283



www.manaraa.com

1=1

Therefore

so that

We

For the

formula

a way it is a sort of miracle that such an involved limit'ng

process should finally boil down to such a simple answer.

This is only a harbinger of things to come.

= lim S = lim b3
1(1 I I)3 b3

n-o-co n-o-co 24n3 12n2 3

should pause in wonder and .mazement at this point.

first time in our experience we have derived an exact

for the area of a region with a curved boundary. In

Exaryle 4. f(x) = x3

Here b b )3 = 1:14 E 3

4
i=I

n
i=1

ise the formula

13 = I [-_/. . 1)4 (
4 C 7/ 1 7 i

274
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and show as in Example 3 that

n

i3 .
I
[(n + 1)4 -

(1)4 n(n-I)]
4 2 2 2

i=1

so that lim S
n

= b4. The details are left to exercise.

Example 5. f(x) = cos x

This is a really difficult example and involves a consider-

able amount of trigonometry which we develop her First of

all we have

n

S = 2: cos
,ib,

= 1

Now for the trigonometry. Recalling the familial- formulas

sin (A + B) = sin A cos B + sin B cos A

sin (A - B) = r A cos B - sin B cos A

and subtracting we have

sin (A + B) - sin (A - B) = 2 sin B cos A

Solving for co we have

215 2
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cos A
2 sin B [sin (A + B) - sin (A - B)]

ibNext, suustituting A = -- and B =
2n we get

cos( lb )
z

[sin ((i + b)- sin((i -n
n2 in

2n

Now, substituting
i = I, 2, 3, ... n, we obtain

cos (I

cos

cos (3Ln )

cos ( ( n - 1 )

cos nb
n

2)

Addingtusing the usual "telescoping sum" technique, we have

n

= 1

cos
2 sin (b)

2n

sin [(n

Cs
(2n+i b)

in
2

2 s n(-)2)
2

216
2 8 0
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Therefore

Thus

m Sn
n

n

b ,ib,
Sn

n
E cos l--i

n

1=1

s i n (I + 2nlb

sin(b/2n) 2n

b/2n

I i m si n[(I +
2n

1 m sin(b/2n)
b/2n

n.+rn

lim
b

2n

Each of the three limits in this formula is easily evaluated.

b
ilm =

2n

lim
nam

sin(b/2n)
b/2n

2n
sin bI m sinE(, sin [nI imt I + )b]

n *co -+,0

since the sine function is unicun. Therefore

2
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cos x dx = lim S
n

sin b
0 = sin b.

0

Example 6. f(x) = sin x

can he done as in Example 5, or there is the following

alter--

7',incu sin x = cos (x - 7), we see by use of Theorems 6

anr .)-F Section 5 that

f sin x dx = f cos ( x
7

) dx

0

Thus we have

TT

zcos x dx

2

b - LT
TT

2 cos x dx - r cos x dx

0 0

Tr

sin (b 2) - sin (- 2)

= -cos b + I

sin x dx = 1 - cos*b.
0

28s.
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The formulas derived in these examples show us that we

will not need to run to the computer every time we see an

integral. In a later chapter an extremely powerful method

will be developed by means of which carload Idts of formulas

of this type can be obtained with very little effort.
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PROBLEMS

I. Evaluate each of the following:

5 5

. (a) jr x dx (e) jr 2(x + 3) dx
0

(b)

( c )

(d)

l2x dx
05

jr5 (2x + 3)dx
0

jr5 (2x - 3)dx
0

:f)

(g)

0

cos x dx

cos (x dx
7C3

2. Suppose f is an even function (that is, f(-x) = f(x) for

all x), and a is a positive number.

0 a

(a) Explain geometrically why jr f(x). . Jr f(x)dx.
-a 0

(b) Explain in terms of upper and lower sums why

1,0 a

f(x)dx = jr f(x)dx.
gLa 0

(c) Show that each of the following formulas holds for

every number c (positive, negative, or zero):

rc
(i) cos x dx = sin c

Jo

280
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( i i ) I dx = C
0

C3
'X2dX =

3
0

3. Suppose f is an odd function (that is, f(-x) = -f(x) for

all x), and a is a positive number.

0

(a) Explain geometrically why Jr f(x)dx = -
a

f(x)dx.
-a

(b) Show that each of the following formulas holds for

every number c (positive, negative, or zero):

( i ) I x dx = C2
2

0

J
x3dx =

4
0

fsin x dx = I - cos c
JO

°

b

4. Use the formula f(x)dx = jrf(x)dx + f(x)dx
a a

to verify each of the following formulas:

(a)

(b)

( c )

Jr sin x dx = cos a- cos b
a

cos x dx = sin b sin a
a

b

a

I dx = b -

281
i
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(d) x dx = -
2)

a

fbx
(e) 3(b32dx = b - a3)

(f) x 3dx = 1(134 - a4)jr
4

a

5. Evaluate each of the following:

(a)

(b)

(c)

( d )

( e )

I dx
2

2

f33

x dx

x2dx

4

x3dx
0

w/2
cosJ

x dx
O

( f ) 10 sin x dx

3

(g) 1 (x + x2) dx

7 / 2
(h) (cos x - 2 sin x + x)dx

j-7/2

12

5

(x + 3)2dx

6. Give anexampleof functions f and g such that

f(x)g(x)dx X f f (x)dx) g( x)dx

0 0 01

7. Work out the details of Example 4.
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9. Tabulating the Sine and Cosine Functions

The formulas derived in the preceding section:

Jr ldx = b, xdx = b2

0 0 2'

b

andjr x2dx = b3
0 3

strongly suggest the general formula,

xndx bn+1
n+I

0

for every integer n greater than 0. This is quite correct.

We could prove it now, but the proof would be very cumbersome

because we have not yet developed the proper techniques for

doing it efficiently. In this section we will temporarily

"borrow" this formula pending its derivation in a later chapter.

We are going to see how the integration formulas and

theorems we have developed so far enable us to calculate the

values of sin x and cos x to any desired degree of accuracy.

We will see that it is all done by repeating the same process

over and over.

From the inequality

283 29.;
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cos x < I

which holds for all x we find by the use of Theorem 5 of Section

5 that

t
cos x dx </. Idx

for all t > 0. Evaluating these integrals by the formulas in

Section 8, we obtain

sin t < t.

for all t > 0. Again applying Theorem 5, we get

fsin t dt < ir t dt
0 0

which can be evaluated to give

x2
I - cos x <

2

This can be rearranged to give the inequality (valid for

x2
I - 2 < cos x

214



www.manaraa.com

Repeating the process over and over we successively find:

or

jr (I _ 2)dx < JrL cos x dx
2

0 0

t
t3

< sin t
2.3

x
t3(t - --) dt <Jr sin t dt
3!

0

X 2 X 4

< I - cos x
2 4!

X 2 X 4
cos x < I - +

2 4!

x2
jr cos x dx

2
(I - X4

!

) dx
4

0 0

t3
sin t < t - +

3! 5!

We see that we could continue this process as long as we like.

Collecting what we have learned so far, we see that

x3 x3 x5

3!
< sin x < x +

x2 X2 X4
2!

< cos X < I - 7-4T
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Let us focus our attention on the sine function now. By

continuing the process we would obtain a sequence s , s
2

s , ... where
3

n k-1
x

s
n

2k-1
=

(-1)
(2k - 1)!

k=1

And sin x lies between each pair of consecutive terms of

this sequence as illustrated in Figure 9 -I.

sin X

sn+1

(a) n is odd

We can see then that

5n

Figure 9-1

sin x - s 1 <
Js n +1n+1

Sin X

Sn Sn +1

(b) n is even

snJ

Now s
n+1

differs from s
n
only in the adjunction of one term,

namely

so that

(-1)n
(2n+1)!

x
2n+

sinx-s I<x
n (2n+1)!

2n+I

2$6 296
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If x is not too large, say if 0 < x < I, we see that

sin x - s <
n (2n+1)'

which is very sm3I I even for relatively small values of n.

For example, if n = 5 then

(2n-1-I)! II! 39,916,800

As you well know, it will only be necessary to tabulate values

of sin x and cos x for x between 0 and 7/2. In fact it is

only necessary to compute the values of sin x and cos x for

values of x between 0 and
7

, owing to the relations

sin x = cos (7/2 x) anj cos x = sin (7/2 - x)

Elf x > 7/4 then 7/2 - x < 7/4.] Therefore, 7/4 is the largest

value of x needed for making complete tables. Since 7/4 = .78,

we see.that errors will quickly get very small indeed.

We give in Figure 9-2 a very efficient flow chart for

realizing the above process as a computer algorithm. You

should check it carefully to see that the successive values

of SUM are the terms of the sequence s , s , s , ... described
1 2 3

above.
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In the exercises which

follow you will be asked to

modify this flow chart so

as to also output approxima-

tions for cos x and to

further modify it so as to

make a table of x, sin x,

and cos x for a set of

equally spaced values of

x.

28$

Air

X5Q <--- X2'
SUM (-0
TERM (---X

LITERM1 <

SUM < SUM -I- TERM
K K+2.

TERNI1046Q
TERM

K x(ti-1-1)

Figure 9-2
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PROBLEMS

I. Modify the flow chart in Figure 9-2 so that approximations

are obtained for both sin x and cos x at the same time.

Try to make the flow chart as efficient as possible.

2. Write a program to prepare a table of sin x and cos x

with x in degrees from 0° to 45°. Label the table along

the right side from 90° to 45°, so that it will be easy

to locate the sine cosine of,any angle between 45° and

90° by using the identities sin x = cos (90° - x) and

cos x = sin (90° - x).
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10. The Unicon Modulus

We have seen in connection with controlling the errors in

the approximations of integrals that we must be able, given a

number e> 0, to find a number d > 0 so that

If(x ) - f(:< )1 < c whenever Ix - x I < 6.
2 1 2 1

The calculations c)f these values of ES were sometimes rather

difficult.

If the tolerance of error in estimating an area were to

be reduced, then the value of c would also be reduced, and it

would be necessary to recalculate an appropriate value of d.

It would be a shame to have to repeat these arduous calculations.

Clearly, it would be much better to have a formula expressing

the value of ES in terms of c. Fortunately, in the worked out

examples of Section 6 such formulas were derived. In Figure

10-1 we see for some of these examples the relations between

d and e given by means of formulas and also graphically.
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6/1,

2 Example 2: f(x) = x3
-I < x < I.

6 =

2 E

(a)

6

2- Example 3:
f(x) = sin x

A
Example 4: f(x) = 1 2

x'

x > 2.

2 E

Figure 10 -I

6 = E

>
2 E

(b)

Example 5:
f(x) =

x > 0.

a = E2

(d)

2 e

We can see in these figures that the value of E deter-

mines the value of 6 so that these graphs are graphs of

functions. At the risk of a slight confusion we will use

the letter "6" to designate these functions. Thus we have:

in Figure

in Figure

10-1(e,

I0-1(b),

6(e)

6(e)

=

=

E-
'3

E

.:0"
2 01
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in Figure 10-1(c), 6(e) = 4e;

in Figure 10-1(d), 6(E) = E2.

This slight change in our attitude will bring a corres-

pondingly slight change in our formulation of the definition

of unicon functions.

Definition (Alternative): We say that f is unicon on

an interval [a,b] provided that there exists a function

6 on the positive numbers to the positive numbers so that

if xl , x2 are in [a,b] and Ix x I

< 6(E) then
1 2

If(x ) f(x )1 < E.
1 2

This is entirely equivalent to the previous definition. Any

such function, 6, is called a unicon modulus for f over the

interval [a,b]. Remember that 6(E) tells us how close

together to take x and x in order to guarantee that their
1 2

functional values f(x ) and f(x ) differ by no more than E.
1 2

This function is not uniquely determined. The "best" 6(E)

would be the largest one as this would allow us the most

leeway in the difference between x and x . In general
2

finding the best possible 6 is very difficult and of very

little practical value. [It so happens that in the four

examples in Figure 10 -I the 6's are best possible, but that

is only because the functions f are so simple.]

292
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Lipschitzian Functions

We observe that in three cases out of four in Figure 10-I,

the graph of the function 6 is a straight line through the

origin. That is, in each of these cases

6(e) = .

In such cases the modulus is generally relatively easy to

find and to work with. A function f having a modulus of this

form over an interval [a,b] is said to be "Lipschitzian" or

to "satisfy a Lipschitz condition" over the interval. An

alternative and more convenient definition of Lipschitzian is

given below.

Definition: A function f is Lipschitzian over the

interval [a,b] provided that there is a number K such that

If(x
2

) - f(x
1
)I < KIX

2
X

1
I

for all x , x in [a,b]. The number K is called the
1 2

Lipschitz coefficient.

We have seen above that the sine function is Lipschitzian over

the whole line with Lipschitz coefficient, I, i.e.,

Isin x - sin x I < I Ix - x 1 for all x , x .

2 1 2 1 1 2
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This is also true for the absolute value function, i.e.,

11xI - IX 11 < I Ix - x I for all x , x ,

2 1 1 2

which statement is essentially equivalent to the triangle

inequality for the absolute value function.

It will turn out that most functions we consider are

Lipschitzian over finite intervals. The geometrical meaning

of a function, f, being Lipschitzian is that there is an upper

bound, K, for the slopes of all chords drawn on the graph of

f. That is,

f(x ) - f(x )

1

x - X
2 1

which is clearly equivalent to

< K

If(x ) f(x )l < Klx - x
2 1 2 1

Figure 10-2
Figure 10-3

The reason that the square root function, f(x) = 17,

0 < x < I is not Lipschitzian is that chords drawn with one

end-point at 0 can have arbitrarily large slopes. Over an

194
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4l '
interval such as [4,2] the square root function is Lipschitzian.

We have tabulated below the unicon moduli for several

functions, some obtained from examples in the text, others

obtained from the following problem set.

Unicon Moduli for Various Functions
over an interval [a,b]. Where

applicable,K denotes max nal, lb1].

Function

f(x) = sin

f(x) = 1
x

f(x) = C

f(x) = IT

f(x) = lx1

f(x) = x

f(x) = x2

f(x) =

f(x) = xn

We are

x

now in

Conditions on Interval

none

0 < a < b

0 < a < b

0 < a < b

none

none

none

none

none

a position to show that sums,

Modulus

6(e) = e

6(E) = a2E

6(e) = 0

6(e) = 2/ e

6(e) = E

6(e) = E

E
6(e) 2K

E
6(e) - 72-3i

E
6(e)

ne-1

differences,

products, quotients, and compositions of unicon functions are

again unicon. Since the proofs of these facts are rather

difficult they have been relegated to Appendix A at the end of

this chapter. Every student should read this material although
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complete mastery of the techniques is not required.

The fact that sums, differences, products, quotients, and

compositions of unicon functions are again unicon is one reason

that unicon functions are important. Recall our earlier remark

that piecewise monotone functions are not so weft behaved.

296 af)6,
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PROBLEMS

I. Verify the entries in the Unicon Moduli Table that were

not established in Section 3-6.,

2. In each of the following examples use the Unicon Moduli

Table to find a (5 small enough to guarantee that an end-

point approximation will yield an error no larger than

specified.

(a)

jr7/2
sin x dx, error < .001

0

(b) jrsin x ax, error < .001

4

(c)

jr1 dx, error < .0001

2

(d)

jr3

dx, error < .001

2

(e)

jr3

dx, error < .001
0

(f) lx1 dx, error < .00001
-2

f2
(g) 51x1 dx, error < .00005

-2

, ^
7-'4 r
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APPENDIX A

Moduli for Combinations of Unicon Functions

It was announced in Section 10 that sums, products,

quotients and compositions of unicon functions are also

unicon. We will c.,tablish these facts in this Section.

This will be done by constructing moduli for these various

combinations out of the moduli of the component parts. These

constructions involve some techniques unfamiliar to you.

Consequently many students find these methods rather discour-

aging. Take heart in the fact you can get a good working

knowledge of calculus without entirely mastering these deri-

vations; millions of students have done t. On the other

hand, the techniques introduced here form the basis of advanced

work in mathematical analysis so that there is a handsome

pay -off for learning them as well as you can. In any event

you should have no qualms about using the result!-, derived

here regardless of whether you have mastered the techniques.

We will suppose throughout this Section that f and g

are unicon in an interval [a,b] with moduli 4 and y respectively.
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[This supposition will be somewhat modified when we come to

the last (and easiest) derivation on composition.]

Modulus of the Sum

Let s = f + g, that is, s(x) = f(x) + g(x) for x in

[a,b]. We must find a function, 6, so that for x and x in
2

[a,b] with Ix - x 1 < 6(e), we have (s(x ) - s(x )I e.

2 1 2

Accordingly we express s(x ) - s(x ) in terms of f and g
2

and rearrange some terms

s(x ) s(x ) = f(x ) + g(x ) - f(x ) g(x )

1 2 1 1 2 2

= [f(x
1

) - f(x
2
)] + [g(x

1

) - g(x
2
)].

Hence, by the triangle inequality

(I) Is(x1)_- s(x2)I < If(xl, - f(x2)I + Ig(x1) - g(x
2

))

Thus, in order to have Is(x ) - s(x )1 < e, it will suffice
1 2

to force each of the quantities

If(x ) - f(x )1 and Ig(x ) - g(x )J

1 2 1 2

to be less than or equal to 2



www.manaraa.com

Now look at the graphs of the moduli cp and y of f

and g.

Graph of (I),

the modulus of f

e/2

Graph of y,
the modulus of g

e/2

If x and x are chosen If x and x are chosen
1 2 1 2

so that Ix
1

x
2

I < cp(f), so that Ix - x I < y(f),
1 2

then If(x ) - f (x )1 <
E
-2.- then Ig(x ) - g (x )1 < &

1 2 1 2 4.

Figure A-I

From this figure and the accompanying remarks we can

see that if x and x are chosen to be less than both 0(2)
1 2

and .y(L), then both the consequences
2

If(x ) - f(x )I <

1 2 2
and 1 g (x) - g (x ) I 1 S-

will hold true which will in turn, as seen in Formula (I),

yield

Is(x ) s(x ) 1 < E.
1 2
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Therefore we choose our modulus for s by

6(E) = minimum of 0(2) and y(i) = min [0(2), Y(1)]

Going over this once more; with 6(E) so chosen, then we

see that

if Ix - x I < 6(E)
1 2

/then\

x - x I <
1 2 2

so that

f(x ) - f(x )1 <
1 2 2

and

whence

xl - x
2

I < y(2)

so that

1g(x ) - g(x 1 <
1 2

Is(x
1

) - s(x
2
)1 < If(x

1

) - f(x 2)1 )1 + 1g(x
1

) - g(x
2
)1 <

E + 7-
E

=7 E

In the particular case illustrated, it is obvious from

the graph that cp(2) < y(f) so that in this case min [0(2), Y(i)]

is 0(2), but in general either one could be the minimum.
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Example I: Let f(x) = x3, g(x) = sin x, [a,b] = [-1,1].

Moduli for these functions are 4)(e) = T , y(e) = e as seen in

Figures 1(e) and 1(b) of Section 10. Thus

4)() =
2 6

and y() =
2 2

so that a modulus for (f + g)(x) = x3 + sin x over the interval

C-1,11 is given by

0(i) = min [0(i), y(i.)] = min (56- i) = .

Modulus of Constant Multiple of a Function.

Let m = cf, that is, m(x) = cf(x) for x in [a,b],

where c is a non-zero constant. We wish to make

1m(x ) m(x )1 < E. The calculations are very simple.
1 2

m(x ) - m(x ) = cf(x ) cf(x ) = c[f(x ) - f(x )]
1 2 1 2 1 2

so that

1m (x ) ) 1 = ICI'lf(X ) f(X )1.
1 2 1 2

Therefore it will suffice to make 1f(x ) - f(x )( less than
1 2

or equal to 6/Icy. Accordingly we choose 6(6) = 0(6/1c1)

". 302 3.1
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so that if Ix - x 1 < 6(c) [which means lx - x
1
< oc/Ic1)3,

1 2 1 2

we have 1f(x ) - f(x
2
)1 C/Idl so that

1

1m(x ) - m(x )1 = Icl-lf(x ) - f(x )1 < 1C1.-E c

1 2 1 2
ICI

Bounds for Unicon Functions.

We will show here that a function f which is unicon on

an interval [a,b] is bounded. That is to say, there is a

number F so that If(x)1 < F for all x in [a,b]. We will show

how to find such a number. In doing this we use only one

value of c, namely c = I.

Consider a partition of

the interval [a,b] with each

of the subintervals having

length 0(1) except for the

last one which is taken to

have whatever length is left

over. In the illustration

in Figure 2 there are six

subintervals, but in general the number of subintervals N

will be the smallest integer greater than or equal to b - a
0(1)

Figure A-2

Now consider a number x in [a,b] as illustrated in

Figure A-2. Adding and subtracting some terms, we obtain
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f(x)-f(a)=f(x)-f(x3)+f(x3)-f(x2)+f(x2)-f(x1)+f(x1)-f(a)

Now using the triangle inequality, we get

If(x)-f(a)I<If(x)-f(x3)1+1f(x3)-f(x2)I+If(x2)-f(x1)1+If(x1)-f(a)I.

According to the way the partition was chosen, each of the

terms on the right is less than or equal to one so that

If(x) f(a)I <I+I-i-l+1= 4

In general the absolute difference If(x) - f(a)I cannot ex-

ceed the number of subintervals passed through in travelling

from a to x. Thus, for any choice of x in [a,b] we have

so that

If(x) f(a) I < N

If(x)I < Ha); N for all x in [e,lp],

which gives the required bound.

Obtaining a modulus for the product of two functions

is the hardest of our derivations. There is a "trick" used

in this process which is so frequently used in connection

304
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with "differences of products" that it is worth a little

special attention.

Consider one rectangle with dimensions L and W and a

second rectangle with slightly smaller dimensions L' and W'.

In Figure A-3 we see these rectangles drawn separately and then

superimposed with the differences of their areas shaded.

L (w -w')

1..

w

Figure A-3

w' (L-

L

The difference of these areas can of course be repre-

sented as LW - L'W' but we also see that this difference is

represented by the two shaded rectangles with areas L(W - W')

and W'(L - L') and so we have

LW L'W' = L(W W') + - L').

The expression on the right has the advantage of indicating

how the difference in the areas depends on the difference in

the dimensions, L L' and W W'. In applications we will

not refer to areas but will obtain this result by the follow-

ing "adding-and-subtracting trick."
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LW - L'W' = LW - LW' + LW' - L'W'

= L(W - W') + - L').

Done in this way it makes no difference whether L - L' and

W - W' are positive or negative. The difference in the products

LW and L'W' has been expressed in terms of the differences

L - L' and W - W'. You will see this trick used in the follow-

ing derivation.

Modulus of the Product.

Let F and G represent bounds for f and g on [a,b], that

is, If(x)1 < F and ig(x)i < G for x in [a,b]. Also let

p = f-g, that is p(x) = f(x)g(x) for x in [a,b]. Our objective

is to make Ip(xl) - p(x
2
)I < e . Accordingly we express the

difference p(x ) - p(x ) in terms of f and g and use our
2

"adding-and-subtracting trick" to obtain

p(x ) - p(x ) = f(x )g(x ) - f(x )g(x )

1 2 1 1 2 2

= f(x )g(x ) - f(x )g(x ) + f(x )g(x ) - f(x )g(x )

1 1 1 2 1 2 2 2

= f(x )[g(x ) - g(x )] + g(x )[f(x ) - f(x )]
1 1 2 2 1 2

Now using the triangle inequality and the bounds on f and g,
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Ip(x ) - p(x )I < If(x )[g(x ) - g(x )]I + Ig(x )[f(x ) - f(x )]I
1 2 1 1 2 2 1 2

= If(x1)1.1g(x1) - g(x2)I + Ig(x,)1.1f(x1) - f(x2)I

< FIg(x ) - g(x )1 + GIf(x ) - f(x )1.
1 2 1 2

to be made < e/2 to be made < e/2

Here we see that we will have Ip(x ) - p(x )1 < e as desired
2

if each of the two terms in this last expression is < e/2.

This in turn will hold true if

Ig(x ) - g(x ) 1

1 2
and If(x ) f(x )I <

1 2 2G

The first of these inequalities will hold if Ix
1

- x
2

I < y( --)

and the second will hold true if Ix
1

- x
2

I < (1)(1..--) where y,
2G

you will recall, denotes the unicon modulus of g and (1) that

of f. Accordingly we choose

6(e) = min [P(A), y(A..)]

With 6(e) so chosen we see that if

X - X
1 2

< 6(e), then If(x ) - f(x )1 <
1 2

7
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and

so that

1g(x ) - g(x ) 1 <
1

2 2F

Ip(x ) - p(x )I < F. g(x ) - g(x )I + G1f(x ) - f(x )1
1 2 1 2 1 2

p e
+

E E

+2F 2G 7 7 c

Example 2. We saw in Figures 1(d) and 1(b) of Section 10 that

the functions t(x) = < and g(x) = sin x have moduli, respec-

tively, 0(e) = c2and y(c) = cover [0,4]. Bounds for these

functions on this interval are F = 2, G = I. Thus, a modulus

for the product

(fg) (x) = T-< sin .x

is given by

2
6(e) = min [OA.), y(*)] = min [(27T) 71-_1

6

so that

el.7 for e < I

6(e) ./4
I

e for e > I

4
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This function is graphed in Figure A-4.

Modulus of the Reciprocal of a Function.

Here we assume that g(x) is positive for x in [a,b] and

that there is a strictly positive number F so that

g(x) > F for all x in [a, b].

Now we let r(x) 9
xx

and calculate:

1 I

g(x ) - g(x )

r(x ) r(x ) =
2 1

1 2 g (>--- gMM- g(x ) g(x )

1 2 1 2

Taking absolute values and noting that 1/Ig(x )1 < 1/F

and 1/1g(x )1 < 1/F, we see that
2

1g(x ) g(x ) 1 Ig(x ) - g(x ) 1

1r(x ) - r(x ) 1

2 1 < 2 1

1 2 Ig(x
1

)1-Ig(x
2
)1

r2

The last expression is made less than or equal to c by making

1g (x ) - g(x ) 1
< r2e

2 1

, which is accomplished by taking

Ix
2

x
1

I < y(r2e).

Accordingly we choose
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6(e) = y(r2e).

(This derivation also works when g(x) is negative through-

out [a,b] with r > 0 such that Ig(x)I > r for x in [a,b].)

Modulus of the Quotient.

This formula is derived by using the product and reciprocal

formulas. As in the derivation of the product formula, let

F be a bound for f on [a,b] so that If(x)I < F for x in [a,b].

Moreover, if 0 < r < Ig(x)I for every x in [a,b], then

I I5-757- I < r so that G = r is a bound for g X
I in [a,b]. Now

let

q(x) = 6--G-Tcf(x) f(x) 91

Denoting by p(e) the modulus for g(x)
derived above we see

that

p(e) = y(r2e)

I

iThe modulus of f(x) s, by the modulus of the product,

6(e) = min CO(1k), u(*)]

r2 r2e
= min [0( --

'

) ( )1
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xn

Example 3: Modulus of q(x)
six over an interval [a,b]

with 0 < a < I. Here f(x) = sin x and g(x) = x so that we

may take 0(e) = e,y(e) = e, F = I, r= a. Therefore

a2e
6(e) = min COT), y(77)]

= min C21, 94-E:j

a 2 c
2

Modulus of the Composition.

This is the easiest to derive of our modulus formulas,

but our assumptions are slightly changed. Here we assume

that g is unicon with modulus y on the interval [a,b] which

is mapped by g into the interval [A,B] on which f is unicon

with modulus 0.

We let c(x) = f(g(x)). And now

Ic(x ) c(x )1 = 1f(g(x )) - f(g(x ))I

1 2 1 2

which will be < e provided that

1g(x ) - g(x )1 < $(e)
1 2

311
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which will in turn hold true provided that

Thus we choose

d(e) = y(0(e)).

Hence for x
1

with

and x
2

Ix x I < y(4(e)).
1 2

in [a,b]

1

Ix x I < (5(e) = y(0(e))
2

1

we have g(x l) and g(x ) in
2 ly(q)(e))

[A,B] with

1g(x ) - g(x )I < 0(e)
1 2

so that

ro

Graph of 4), the
modulus of f over [A,B]

Graph of Y, the
modulus of g over [a,b].

1'
(e)

Modulus of composition
of f and g.

1f(g(x1)) - f(g(x2))1 < e.

Figure A-5

Hence we see that the modulus of the composition of

two functions is the composition of their moduli in the

opposite order. This is illustrated in Figure A-5.
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Modulus of Function Plus Constant.

It is left to the reader to establish that f(x) + k

has the same modulus over [a,b] as does f(x).

Example: Modulus of (7 + 1)3 over [0,4].

Letting f(y) = y3 and g(x) = 7 + I we see that

f(g(x)) = (7 + 1)3

The modulus of g(x) is the same as that of 7 which has

been seen to be y(c) = E2. The interval [0,4] is mapped by

g into the interval [1,3] on which f has the modulus

0(c) = . Thus the modulus ó of f(g(x)) is given by

26(c) = y(0(c)) = (4)
E2

729

It should be mentioned that this is an extremely bad result

as far as actual computing is concerned. If we wished to

know the area under the curve y = ( + 1)3 between x = 0

and x = 4 with error < 10
-4 then we would have to choose E

10-4so that (b - a)c < 10
-4

or c
4

whence d(c), the spacing

of our subintervals would have to be < (10
-4

/4)2/729

= 8.6-10
-13

. The number of calculations of the functional

values required for this problem would be about 2.3.10
12

.

313



www.manaraa.com

Even with the high speed of computers such a number of

calculations is far beyond our scope. Before long we shall

develop methods for avoiding such difficulties.

In the table below we have collected the results of

this section.

TABLE I

LEGEND

0 is a modulus of f on [a,b].

y is a modulus of g on [a,b].

6 is a modulus of indicated combinations on [...a,b]

Where applicable:

F is an upper bound for f on [a,b].

G is an upper bound for g on [a,b].

r is a positive lower bound for g(x) on [a,b].

Name Combination Modulus of Combination

Sum s(x) = f(x) + g(x) 6(e) = min [0(7), y(p]

Consant m(x) = K f(x)
e

6(e) = )0(
Multtiple

IKI

Product p(x) = f(x) g(x) 6(e) = min [0(*), y(2F)]

Reciprocal

Quotient

=
I 6(e) = y(r2e)

re r2e
6(e) = min [0(7), Y(27)]

r(x)
g(x )

q(x) = f(x)/g(x)

Additive
Constant

k(x) = f(x) + K 6(e) = 0(e)

Composition c(x) = f(g(x)) 6(e) = y(0(e))

(Here g maps [a,b] into
[A,B] on which interval f

has modulus 0.)
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Example: To compute a modulus for

X 3 + x + I

(X2 + 2)3
over 0 < x < I.

Here moduli of x, x2 and x3 over [0,1] are E, 2, 54-, respectively.

The function g(x) = x2 + 2 maps [0,1] into [2,3] over which

interval f(y) = y3 has modulus
27

. Now from our table:

modulus of (x3 + x)

modulus of (x3 + x + I)

modulus of x2 + 2

modulus of (x2 + 2)3

is min (E/8, E/2) = E/8

is E/8

is c/2

is (E/27)/2 = E/54

Now the maximum of x3 + x + I on [0,1] is 3 while minimum of

(x2 + 2)3 on [0,1] is 8 so that

X3 I
8F-

2,c
6(e) = modulus 014 is min [-=/3, /54]

2
(x2 2)3

315
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PROBLEMS

I. Prove that if c is any constant, then the unicon modulus

of f(x) + c on an interval [A,B] is the same as the

unicon modulus of f(x) on [A,B].

2. Cite previous problems and results (but do not use

epsilons and deltas) to prove that each of the following

functions is unicon on the interval specified.

(a) f(x) = x + 4

(b) f(x) = 2x 3

(c) f(x) = x2

(d) f(x) = + sin x

(e) f(x) = --I-- + 2 + 4x2
x3

(f) f(x) = x/Tr71-7

(g) f(x) = sin(x2)

(h) f(x) = x sin(x)

on [3,8]

on [ -1,1]

on [-5,2]

on [2,4]

on [1,2]

on [ 71.]
2'

on [ -1.0r]

on [i,-5-]

3. Prove by induction that any polynomial function

f(x) = a
0

+ a
1
x + ... + a

n
x
n

is unicon on any closed

interval [c,d].

316



www.manaraa.com

APPENDIX B

Dispensing with Area

The purpose of this section is to free our definition

of the integral from any preliminary assumption that regions

under curves have areas. In fact, we will take a reverse

f(x)dxpoint of view. When f is positive over ra,b] and
a

exists
)
we then define the area under the graph of f from a to

b to be equal to this integral.

In spite of our claim to be making our development in-

dependent of existence of areas,

you will see many references in

this section to areas of regions

built up of rectangles such as

seen in Figure I. Such areas
a-x0 x, x2 x3 k4b

enjoy a different status than

areas of regions with curved
Figure B-1

boundaries. For example, the shaded region in Figure B-I can

be regarded as merely a geometrical method of representing

the sum

4

mk(xk - x
k-1

)

k=1
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We assume throughout this section that all lower and

upper sums are for the same function f over the same interval

Ca,b3. There are three things to be established:

(I) every lower sum is less than every upper sum;

(II) if L
n

and U
n

, n = I, 2, 3, ...,are sequences of

lower and upper sums with lim (Un - Ln) = Olthen
n÷co

these two sequences converge to the same limit, I;

(iii) the value of this limit I is independent of the

choice of the sequences Un and Ln enjoying the

property lim (Un - Ln) = 0.

We consider first the question: Can we see that every

lower sum is less than every upper sum without making appeal

to the area under the curve and reasoning

L< A and A< U so that L< U?

The answer is certainly yes in the case that the upper and

lower sums are based on the same partition. For then we see

that

m < M
k k

k = I, 2, 3, ..., n

and since the differences x
k

- x
k-1

are positive,

m
k
(x

k xk-I)
Mk(xk - k = I, 2, 3, ..., n

and hence

L = mk(xk - xk_1)4 Mk(xk - xk_i) = U

k=1 318 k=1328
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To see that the relation L < U holds true even when

based on different partitions we consider Figure B -2.

In Figure 8-2(a) and 8-2.b) we

see shaded areas representing lower

and upper sums for a function f over

an interval [a,b] but based on diff-

ent partitions. In Figure B -2(c) the

two Figures B -2(a) and B -2(b) have

been superimposed thereby creating a

new partition ccnsisting of all the

partition points of both earlier

figures. The areas L and U are

unchanged and we see that they can

be considered as lower and upper

sums based on the new partition.

Since we have already seen that when

based on the same partition, lower

sums are less than or equal to upper

sums we now find that L < U.
Figure B-2

Next we will show, given two

lower sums, how to obtain .a third one greater than or equal

to each of the two given ones. At the risk of a little con-
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fusion we will use the letters U and

L to denote both the rectangular

regions and their areas, letting the

context carry the information as to

whether regions or areas are being

considered.

In Figures B-3(a) and B-3(b) we

see two lower sums L1 and L2 for f

over the interval [a,b]. In Figure

B-3(c) the entire shaded area L which

is the union of L
1
and L

2
(L1 U L

2
).

Clearly since L1(.7.. L and L2 C: L we

have for the areas, L1 < L and

L2 < L. Figure B-3(d) is a repeat of

Figure B-3(c) with some of the un-

necessary lines omitted.

In Figure B-4 we do a similar

thing for upper sums. Here, given

two upper sums U1 and U2, we show

how to obtain a third one less than

or equal to the two given ones.

In Figure B-4 we see Figures B-4(a)
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and B-4(b) superimposed and observe

that U, the intersection of U1 and

U2 (U1 () U2), the doubly cross-

hatched region in Figure 8-4(a), again

represents an upper sum. This inter-

section, U = Ulf) U2 is shown again

in Figure B-4(d) with extraneous

detail omitted. Since U C U1 and

U C:U2 we see that for the areas we

have U < U1 and U < U2.

Now we are in a position to

dispose of the first objection to

our definition of the integral. We

will show that sequences Ln,

n = I, 2, ... and Un, n = I, 2, .

of lower and upper sums satisfying

I im
n

- L
n

) = 0 must converge to a

n÷.

common limit.

Considering that we are given

sequences Ln and Un with

lim (U
n

- L
n

) = 0 we construct new

n4.0

sequences of lower and upper sums

L' and U' according to the following
n n

321
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rule:

LI = L
1' and for n > I LI = L

n
U LI

n- I '

UI = U1, and for n > I UI = Un n ul .

n n-I

Study this rule of formation carefully to see exactly what it

says, particularly noting where primes do and do not occur

and the use of intersection and union.

Previous observations now guarantee that:

(i) LI and UI are lower and upper sums for n = I, 2, ...;

(ii) L' > L' so that the sequence LI, 14, L3, ... is

increasing;

(iii) Ut
n

< U' so that the sequences Ul, U2, U3, ... is

decreasing;

(iv) L
n

< L' and U' < U
n

for n = I, 2, . . ;

(v) L' < UI
n

since any lower sum is less than any uppern

sum.

The last two remarks show that for each value of n we

have the ordering indicated in Figure B-5.

Ln Un

Figure B-5

Therefore 0 < UI - L' < U - L
n
and since lim (U

n
- L

n
) = 0n n n

n÷co
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the squeeze theorem shows that lim (U1 - L') = 0 also.
n4-.0

Therefore, by remarks (ii) and (iii) above we see that L' and

Ul are respectively increasing and decreasing sequelice_ whose

differences tend to zero so that these sequences :onverge to

the same limit by the completeness axiom.

Again using the squeeze with Figure B-5 we see that

0 < - Ln Un - Ln and 0 U
n

- Ut < U - L
n

n n n

whence

lim (Ll - L
n

) = 0 and lim (U
n

U') = 0
n4-03

n

which assures us that the limits

lim L
n

and lim U
n

actually exist (because lim L' and lim U' do)
n

and

lim L
n

= lim L' = lim U' = lim U
n

.

The second objection to the definition of the integral is next

disposed of by similar methods.

Suppose that L
n

and L* are sequences of lower sums and

that U
n

and U* are sequences of upper sums. And further
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suppose that

lim (U - L ) = 0 and lim (U* - L*) = 0.
n n

As already seen, Ln and Un will converge to a common limit,

I, and L* and U* will converge to a common limit 1*. We wish
n n

to show that 1* = I.

Since every lower sum is less than every upper sum, we

see that for each integer n each of the lower sums L
n

and L*

is less than each of the upper sums U
n

and U*. Thus if we
n

select M
n
halfway between the larger lower sum and the smaller

upper sum,

Mn
1

Ln Ln* Un Un*"

we, have both the inequalities

Since

L
n

M
n

U
n

and L* < M < U*.n n n

lim L = I = lim U
n

and lim L* = 1* = lim U*
n

the squeeze theorem guarantees that

lim Mn = and lim M
n

= I*.
n.4-00 n-40,

The uniqueness of the limit of a sequence therefore assures

us that 1* = I.
324
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CHAPTER 4

APPLICATIONS OF INTEGRALS

1, Calculating Areas

We have seen that an area

like that of the total cross-

hatched region in Figure I-I

is expressible as

fb

f(x)dx.

Similarly the area of the

doubly cross-hatched region is

b

g(x)dx.
a

It follows that the area of the

singly cross-hatched region ly-

ing between the two curves is

the difference of these two in-

tegrals, and by a property of

integrals (Corollary I of Section

3-5) this is

b

[f(x)-g(x)]dx.

325
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As noted on page 210 many areas can be found in this way.

Example 1. Find the area of the region bounded by the curve

y= 4- x- 2x2 and the lines y= 4- x and x= 2. In a

problem like this it is important to draw a careful figure

and see just what the region looks like. Here we obtain

Figure 1-2. The horizontal limits of the region are 0 and

2, and so the area is

f2
0 2

[(4-x) - (4 - x 1x2)]dx

f 2
I 2 I I

3
8 =

4x dx =
20 2 3

using the result of Section 3-8, Example 3.
Figure 1-3

Example 2. Find the area of the region bounded by the curve

y = x2 - 2 and the line y = x. By solving the two equations

simultaneously we find that the curve

and the line intersect at (-I, -I) y= x÷3

(z,$)
and (2,2), giving Figure 1-3. Here

the problem is more complicated y=x4+1

since part of the region lies below

the x-axis and we have seen in X

Section 3-4 that this gives a nega- Figure 1-4

tive contribution to the integral. However, we can get back
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to the case of Example I by using the trick introduced at the

end of Section 5. That is, we consider the curves

y = x2 2 + k and y = x + k, where k is chosen so that the

region bounded by the two curves

lies entirely above the x-axis, as

in Figure I-4, in which k = 3. This

amounts to lifting the region by an
Y.0(

amount k without changing its

shape or size. Hence the area is,

as before,

I2
- 1

E(x + k) - (x2 2 + k)]dx

1

Ex (x2 2)]dx

I2 (2 2

x dx - J x2dx + J 2 dx

Figure 1-5

[22 - (_1)2] - [23 - (-1)3] + 2[2 - (-1)] = 41
2 3 2 '

using the result of Problem 4, Section 3-8.

Example 2 shows that the general expression

fb
(I) A = J [f(x) g(x)]dxI

gives the area bounded on top by y = f(x), on the bottom by

321
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y = g(x), on the left by x = a and on the right by x = b,

regardless of how this region is located with respect to the

coordinate axes. One way of looking at this is to think of

this region as cut into many vertical strips, one of which is

shown cross-hatched in Figure 1-5. The height of such a

strip, at position Ei is approximately f(E1) - g(Ei), and

the sum of the areas of all the strips is similar to the sum

(I) on page 265. In fact, the whole theory of Section 3-7

can easily be extended so as to give a proof of formula (I)

above. We shall not do this, however, since in Chapter 12 we

shall present an approach to the integral that covers not only

this case but others much mcre complicated. For the present

we can accept the evidence of Example 2, which can obviously

be made completely general, that formula (I) is correct.

Like so many textbook problems Examples I and 2 were made

numerically easy to facilitate concentration on the principles

involved. A more realistic example is the following.

Example 3. Find the area

common to the ellipse

2 y2

T I

and the circle

- 2)2 + (y - 1)2 = 4.

(Figure 1-6)

Y

L M9, -A 1.f.)

Figure 1-6
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It is evident from the figure that one point of intersection

of the two curves is (0,1). The other point is much more

difficult to determine and is left as a problem (Problem I).

To three decimal places it is (1.159, -0.815).

(2)

The desired area is, as before,

(2
A = .10 [f(x) - g(x)]dx,

where y = f(x) is the equation of the curve at the top of a

vertical strip and y = g(X) is the equation of the curve at

the bottom. Evidently

,2
f(x) = I -

4

since the top of the strip lies on the ellipse. But the

bottom of the strip is sometimes on the ellipse and sometimes

on the circle. Precisely:

Thus

g(x)

1 4 (x-2)2 if 0 < x < 1.159,

4

(2
A = h(x)dx, where

329
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x2
/41

4
-I + /4 - (x-2)2 If 0 < x < 1.159,

x2
4

< x < 2.

This integral can be evaluated by one of the programs of Section

3-2, to give A = 2.403 to three decimal places.

Another way of expressing this integral, avoiding the

2-part expression for g(x), is to use Theorem I of Section 5

to get

(1.159 2

0
A =

(i/1
4

x

4

2
x22/1 dx.

1.159

/4 + (x-2)2)dx

There is no advantage in this if machine computation is to be

used but later methods will enable us to evaluate this without

the use of a machine.

Many area problems are given to us not in terms of functions

but in terms of equations of curves. Indeed, Example 3 is of

this type. In treating it we could equally well regard each

curve as defining x as a function of y. Then we take horizontal

-ra
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strips, as in Figure 1-7, and the length of such a strip is

where

(4)

G(ni) - H(ni),

G(y) = 21 - x2

H(y) = 2 - 4 - (y-1)2 .

The area is therefore

(2I-x2 -2 + 4 - (y-I)2)dy.
Figure 1-7

This of course must also evaluate to 2.403. Evidently this is

a somewhat neater way to do the problem.

Here is an example that emphasizes the differences in the

two methods.

Example 4. Find the area

of the region bounded by

the parabola y2 = 4x and

the line 2x - y = 4.

(Figure 1-8) Solving the

second equation for

and substituting in the

first gives y2 + 2y-8 = 0,

331
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which has roots y = 4 and y = -2. The points of intersection

are thus (4,4) and (1,-2). The use of vertical strips is awk-

ward, giving

-

0
41i; dx +

4
C2/-; - (2x - 4)]dx.

With horizontal strips we get the much nicer form

I4(

T1[1(4 + y) y2]dy

which by the methods of Section 3-8 evaluates to 31/3.

Whether, in a given problem, horizontal strips are better

than vertical strips is something that can only be learned by

experience. In most cases it isn't of great importance since,

fundamentally, all problems can be done either way.

332
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PROBLEMS

Ti find the points of intersection of x2 + 4y2 4 = 0

and x2 + y2 - 4x - 2y + I = 0:

(a) Solve one equation for y2 and substitute in the

other;

(b) Solve the resulting equation for y in terms of x

and x2;

(c) Substitute in the first equation to get an equation

in x only;

[Ans. 9x4 - 96x3 + 320x2 - 256x = 0.]

(d) This equation must have one root x = O. From

Figure 1-6 there must be another root between 0

and 2. Use your program from Section 2-2 to compute

it to at least 5 decimal places; [Ans. 1.15947275]

(e) Use the result of (b) to get the corresponding value

of y. [Ans. -.814804107]

2. Find the areas of these regions. The integrals, if properly

set up, can all be evaluated by the formulas of Section 8.

(a) The region bounded by the curves 4y = x2 and

y = 5 x2. Ans.

(b) The region in the first quadrant bounded by the

y-axis and the curves y = sin x and y = cos x.

Ans. 12 -1.
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(c) The entire region bounded by the curve

y = x3 - 4x2 + 4x + I and the line y = x + I.

(Be careful!) Ans.
37
12

(d) The region in the first quadrant bounded by the curve

y2 = 4x, the x-axis, and the line x = 4. Ans.
32

.

3. The interior of the ellipse x2 + 9y2 = 9 is divided into

two regions by the line x + y = 2. Set up, but do not

evaluate, one or more. integrals expressing the area of the

-mailer region, using (a) vertical strips, (b) horizontal

strips.

4. (a) Why is Jr0 1a2 - x2 dx = 4 7a2?

(b) Show that the area of the ellipse

2 2
=

a2 b2

is Ira!).

5. (a) Use the adjacent figure to

derive the integration

formula

fb
a2 x2 dx = (b)a2 b2 a24),

2
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where 0 < b < a and sin (I) = b/a, (I) being measured

in radians.

(b) Use this formula to evaluate

f0 l 4 - x2 dx.

to 3 decimal places without using the computer.

[Ans. 1.913]

(c) Use the result of Problem 2(c) to derive

rc - x2 dx = 1c a2 - x2 dx, 0 < c < a.

(d) Evaluate

I2
,

- x2 dx

to 2 decimal places without using the computer.

[Ans. 3.46]

(e) Find the area in Problem 3 to 2 decimal places without

using the computer. [Ans. 1.19]
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6. (a) Find the area

of the cross-

hatched region.

(b) If c is the

midpoint of AB

show that the
(a, kat

area in (a) is

4
the area of

B

y=kxa

(b,kbz)

the triangle

AMB. This

property of the parabola was first proved by

Archimedes in about 250 B.C.

6

340
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2. Calculating Volume

Associated with the concept of volume there are properties

closely analogous to those of area, as follows:

(i) Corresponding to every three dimensional region

R, there is a number V(R) > 0, called the volume

of R.

(ii) If a region R is con-

tained in a region S9

then V(R) < V(S).

[Thus, in Figure 2-I

the volume of the

sphere will be

the volume of the

cone.]
Figure 2-I

(iii) Congruent regions have the same volume.

(iv) If a region R is decomposed into two or several

3318 4 7
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nonoverlapping parts then the volume of R is equal

to the sum of the

volumes of the

individual parts.

[Thus, for example,

the volume of the

"orange" in Figure

1-2(a) is the sum of

the volumes of the

"segments" shown in 0°2
the "exploded" diagram

of Figure i-2(b).]

(a)

(v) The volume of a

"right cylinder" is

(b)

Figure I -2

the product of the height and the area of the base.

In connection with (v) we denote as right cylinders a

more general type of region than: the familiar circular cylinders.

In general by a right cylinder we denote the region bounded

by +wo planes and by a "wall" composed or line soments per-

pendicular to the two planes.

The plane figures cut ol-f on the two parallel planes

are congruent and are called the "bases" of the cylinder.

338 348
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When we refer to the "area of the base" we refer to the area

of one of these bases.

(a) Circular (b) Guitar shaped (c) Box shaped

Figure 1-3 Right Cylinders

In analogy with area, we will see in the next section

how the volumes of certain solids, which are not cylinders,

can be represented as integrals.

339
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2. Solids of Revolution

If the region under the graph

of a function, as seen in Fi-

gure 2-I(a), is rotated about the

X-axis, the space-capsule-shaped

solid swept out [Figure 2-1(b)] is

called a solid of revolution.

Many familiar geometrical solids

have this form such as the cone

and the sphere in Figure 2-2.

Figure 2-2

:;340

d
(a)

(b)

Figure 2 -I

Now we are ready to

see how the properties

of volume in the pre-

ceding section enable

us to determine the

volumes of solids of

revolution.

3 5 0
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In Figures 2-3(a) and

2-3(c) we have returned to

the picture in Figure 2-I(a),

partitioned the interval

Ea,bland formed upper and

lower rectangular con-

figurations. Then in Figures

2 -3(b) and 2-3(d) we rotated

these configurations about

the X-axis obtaining wedding-

cake-shaped cylindrical

configurations respectively

contained in and containing

the space-capsule-shaped

solid shown in Figure 2-I(b).

According to the second

of the properties of volume

in the preceding section,

the volumes of these "wedding

cakes" yield respectively

lower and upper approximations

of the volume of the space

capsule.

a =X0 x1 X

(a)

5 X4 ..)(5 X6 X7=

xo x2 X X4 x5 x6 x7= b

(C)

341 3 5 t
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According to the fourth of the properties of volume in

the preceding section, the volume of such a wedding cake is

the sum of the volumes of the individual layers. To find

the volume of such a layer, we

have in Figure 2-4(a) singled

out one of the rectangles in

Figure 2-3(c) and shown the

cylinder swept out by this

rectangle in Figure 2-4(b).

According to the last property

of volume in the preceding

section, the volume of this

cylinder is the area of the

base times the height or

7M2(x
k

x
k-I

)

a X K..1 XK b

XK

Figure 2-4

Adding up the volumes found in this way for the indivi-

dual layers, we find for the volume of the outer wedding cake

in Figure 2-3(d)

n

U =
7m2k

(x
k

x
k-

)

where n denotes the number of subintervals in the partition

of [a,b] and the Mk denote the heights of the rectangles in

Figure 2-3(c). Similarly the volume of the inner wedding cake
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in Figure 2-3(b) is given by

L = um2k (x - x )

k k-1

k= 1

where the m
k
denotes the heights of the rectangles in Figure

2-3(a). Moreover we have the inequalities

L < V < U

where V represents the volume of the space capsule.

From the inequalities

mk < f(x) < M for x < x < x
k k k-I k

it follows that

um2 < u[f(x)]2 < uM2 for x < x < xk
k

or in other words

um2 and uM2

are lower and upper bounds for the function F(x) = u[f(x)]2

on the interval Ex
k-1'

x
k
J. Consequently, L and U are lower

and upper sums for this function F on the interval [a,b].

Assuming that f is integrable over [a,b] so that

F(x) = urf(x)12 is also integrable over this interval, we can

construct sequences L1, L2, ... and U1, U2, ... of such lower

343 35::
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and upper sums so that Un - Ln converges to 0 as n-->co. From

the theory in Chapter 3,

lim L
n

= lim U
n

jr b F(x)dx w[f(x)]2dx
a a

However, since

it is also clear that

Thus we see that

L
n

< V < U
n

,

lim L
n

= V = lim U
n

.

rb
lim L

n
= w[f(x)]2dx

n.4-co

This is typical of the reasoning involved in repre'c' ing

geometrical and physical quantities by means of integrals, but

in future applications we will greatly condense the explanation.

Example 1: To find the volume of a sphere of radius a.

Solution: First we will find the

volume of the hemisphere swept

out by rotating about the X-axis

the region under the graph of

f(x) = Vat - x2

444
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between x = 0 and x = a.

According to the above discussion the volume of this

hemisphere is given by

ea a

TrEf (x)12dx = f 7(a2 - x4)2dx
0 0

jra

7(a2 - x2)dx
0

ii(a2x - 00a 7(a3
-

a

3

3 27a3

3 I 3
0

1
a

b

(The notation F(x) as used above is a convenient shorthand

4
for F(b)-F(a).) Thus the volume of the entire sphere is ra 3

.

The method presented here can be extended to finding the

volumes of more complicated regions such as +hat obtained by

rotating about the X-axis the region indicated in Figure 3-6(a).

a

(a)

b

(b)

Figure 3-6

34e
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The volume of this solid depicted in Figure 2-6(a) is clearly

the difference of the volumes of the solids in Figures 2-6(c)

and 2-6(d) obtained by rotating the regions under the graph of

f and that under the graph of g. The volume in Figure 2-6(b)

is therefore given by

('b b

V =Jn[f(x)]2dx -1 n[g(x)]2dx
a

a

=
b (Cf(x)12 - [g(x)]2)dx.

a

Example 2: To find the volume of the "doughnut" obtained by

rotating about the X-axis the region

inside the circle

x2 + (y - b)2 = a2

where a < b.

Solution: Solving the above equa-

tion for y, we obtain

y = b ± a2 - x2

-a o

(a)

a.

Figure 2-7

(b )

so that the upper and lower bounding curves for the region in

Figure 2-7(a) are given by

f(x) = b + a2 - x2 and g(x) = b - Val - x2 where -a < x < a.

Now [f(x)]2 - [g(x)]2 is calculated to be

346
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[f(x)]2 - [g(x)]2 = (b + a2 - x2)2 - (b a2 x2)2

= 4ba2 xl .

Using the technique of integrating from 0 to a and doubling,

we have

V = 2n Jr
4b1az - x2dx = 8nbjr a2 - xZdx

0 0

a a

At first glance we seem to be at an impasse in finding a

formula for the volume of the doughnut for we as yet have no

technique for eveluating the 'ntegral

/az - xzdx .

However, we quickly recall that this integral also represents

the area of a quarter circle

of radius a (as dealt with F(X)=171-27(2

at considerable length in the

early sections of Chapter 3).

There fore,

fa
nag

az - xzdx - -T

0

Figure 3-8

and the volume of our doughnut is now seen to be

Jr

a 2
nV = 8b az - x2dx = 8nb = 2n2a2b.

-T-
0

341 .3 5 7
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The trick that we used here is an example of an important

technique known as the Method of Analogy. Suppose that we

have two problems that can be reduced, at some stage, to the

same mathematical model; in our case this model was the

integral

ra 'far
J

-77) dx.
0

If we know the solution of this model by means of some other

approach to the first pr 'Hem, then we can apply this know-

ledge to the second problem.

We can illustrate our two problems with the following

rough diagram:

Area of Circle Volume of Torus

Ancient Greek Area under
Geometry

function a2 - x2

nag Chapter III

e2 - dx
0

348
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Example 3. Suppose that a gold ring is made by cutting a

cylinder of radius r out of a sphere of radius R.

(a) What is the ring's width?

(b) What is the volume of the ring? Hint: We may think

of the ring as being obtained by rotating about the

X-axis the region between the graphs of y = Az - xz

and y = r. (See Figure 3-9).

(c) Write a formula for the volume V of the ring in

terms of its width W.

Solution: The two graphs intersect when r = R2 - xz ,

that is, x = ±Rz - r2 . Thus the ring extends from

x = R2 - rz to x = Rz - rz , and its width is

2R2 - r2 Its volume is

2 - r2
2 f (ff(Rz - x2)2 - irr2)dx
JO

Rz rz
= 271. f (A2 _ x2 - r2) dx

0

= 2R2Rz -

4
ff(R2 r2)3/2

349

(R2 -
r2)3/2

3
r2)/Rz - rz
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We have W = 2R - r2 and V = 4 ff(R2 r2)3/2. Therefore,

V = i w3.

Figure 2-9

350



www.manaraa.com

PROBLEMS

I. Compute the volume of the solid obtained by rotating each

of the following figures around the X-axis.

(a) The rectangle with vertices at (0,0), (5,0), (5,3),

(0,3).

(b) The triangle with vertices at (-1,0), (1,0), (0,3).

(c) The region bounded by the curves y = x2, y = 0, x = -I,

x = I.

(d) The region bounded by x = 4y2 and x = 7.

(e) The region bounded by y = x and x = y2.

(f) The region bounded by y = x2 and x = y2.

(g) The square with vertices at (7,2), (7,4), (9,2), (9,4).

(h) The triangle with vertices at (-1,2), (1,2), (0,5).

(i) The region bounded by y = 0, y = sin x, x = 0, x =

(j) The region bounded by y = I, y = sin x, x = 0, x =

2. If A and B are congruent regions, and if VI and V2 are

volumes of the solids obtained by rotating A and B,

respectively, about the X-axis, is it necessarily true

that V = V
2

?

3. Suppose A is a region and B is a region obtained by

translating the region A to the right or left. Is the

volume obtained by rotating A about the X-axis necessarily

equal to the volume obtained by rotating B about the X-axis?

351
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3. Another Characterizat!on of the Integral

When electrical users are billed, they are charged for

the number of kilowatt-hours they have consumed during the

month. The units require some explanation. The "watt" is a

unit of electrical power; the kilowatt is a somewhat more

convenient unit equal to 1000 watts. The kilowatt-hour is a

unit of electrical energy consumed in drawing one kilowatt of

power for one hour. For example, ten 100 watt light bulbs

draw one kilowatt of power; thus ten 100 watt bulbs switched

on for one hour consume one kilowatt-hour of electrical energy.

If power is used at a constant rate (i.e., not varying with

time), then the formula for the energy consumed is

ENERGY = POWER x TIME.

Thus when a five kilowatt air conditioner is operated for

three hours, the amount of energy consumed is

5 kilowatts x 3 hours = 15 kilowatt-hours.

(In the future we will suppress the units in such calculations.)
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If we look at the power drawn by an entire town during

a 24 hour day, the power will certainly not be constant but

will vary with time. In

Figure 3-I there is a graph

of such a power function, f.
6000

There are dips in the graph 4-
1:$

4000

when'factories shut down at 0

lunch and at the end of the
1000

working day, and there is a

hump when lights and televisions

come on in the evening. In

6 9 12. i5 ra 2.1 24
time

Figure 3 -I

the middle of the night the main power consumption is due to

street lighting and refrigerators. Now we ask the question,

if the power function is given, how can we determine the

number of kilowatt-hours of energy used over a given time

interval?

First we introduce a notation to represent this quantity.

We will use

t

E 2(f)
t

to denote the energy consumption between the times t and t
1 2

using a power function, f.

353
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Next we take note of three relatively obvious properties

of energy consumption.

(i) The number of kilowatt-hours of energy consumed

between 3 o'clock and 6 o'clock is the sum of the

amount consumed between the hours of 3 and 5 and

that consumed between 5 and 6. In general, if

t < t < t then
1 2 3

E
t
3(f) = E 2(f) + E

t
3(f).

1 1 2

(ii) If user A at all times draws less power than user

B, then user A will

use less energy than

user B. We express

this principle in

the form: If

f(t) < g(t) for

t < t < t (as
2

seen in Figure 3-2)
t t

then E
t
2(f) < E

t
2(g).

Figure 3-2

(iii) As already observed above, if power is drawn at a

constant rate, then the energy consumption is the

product of the power and the time. That is, if

f(t) = k for t < t < t , then
2

354
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E
t
2(f) = k(t

2
t

1

).

1

These three properties suffice for us to prove that for

any power function f and any time interval [a,b],

E
a
(f) =J f(t)dt

a

provided of course that f is integrable over [a,b].

We will see this by showing that the inequality

b

L < E
a
(f) < U

holds whenever L and U are lower and upper sums for f over

[a,b]. We show this for upper sums in three steps using one

of the above properties in each step.

Step I. Consider an upo,- -um

U =2:Mk(tk - tk_i)

k=1

for f over [a,b] and focus

attention momentarily on the

subin'..erval Et , t J. We let
0

355
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g(t) = M, for t
0

< t < t
1

. Since f(t) = g(t) for

t
0
< t < t

1

, we see by property (ii) that

t1 t1
E
to

(f) E
t

(g).
0

Step II. Since g is constant in [t ,t 1, property

t1
0 1

(iii) yields E
to

(g) = M (t - t ) so that
1 1 0

tl
E (f) < M (t t ).
to

1 1 0

By the same reasoning applied to each subinterval [tk_1,tk],

we obtain

tk
(f) M

k
(t

k
t ) for k = I, 2, ..., n.Etk
k-1

Step 111. Adding these inequalities for k = I, 2, .

we find

n
t

n

12E4.- (f) IM
k
(t

k
- t

k-1
) = U

l

k=1
k-1

k=1

Finally, repeated application of property (i) above yields

n
t
kEb(f) =LE

t
(f) < U

k= 1

a k-1

3Gv
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b

Conclusion. We have shown that E
a
(f) < U for every

upper sum U. It may be shown in a similar manner that
b

L < Earn for every lower sum L. It now follows that

b b

E
a
(f) = r f(x)dx.

Example. Suppose that a certain pogo stick company consumes

energy according to the power function p(t) = 20000t - 2500t2

during the time interval [0,8]. How much energy is consumed?

Solution. 8 8

Jrp(t)dt = jr (20000t - 2500t2)dt
o o

8 8

= 20000.1 tdt-2500.f t2dt

0 0
83

= 20000 (

2
) - 2500 7

= 640000 - 426667 = 213333

If we extract the mathematical content from the fore-

going discussion and forget about power and energy, we have

the following principle.

We assume that for each function f and each interval
b

[a,b], a number Ea(f) is determined and that the following

properties are satisfied:

b c c
(i ) E

a
(f) + E

b
(f) = E

a
(f) whenever a < b < c;
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b b

(ii) If f(x) < g(x) for x in [a,b], then Ea(f) < Ea(g);

(iii) If f(x) = k (constant) over [a,b], then
b

E
a
(f) = k(b a).

Under these conditions, we may conclude that

E
a
(f) .jr f(x)dx

a

Many applications of the integral (but by no means all)

fal: into this category. Let us see one more.

Let

t
2

D
t

(f)

represent the distance travelled by a moving object where

the function, f, denotes its speed, i.e.,

f(t) = speed of object at time t.

We shall show that

D
t

t2
(f) =

t2
f(t)dt

1
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by verifying the three properties specified in the principle

above.

t

(i) D
t

2
(f) +

t

t
3
(f) = D

t

3
(f)

1 2 1

(This says that the distance travelled between times

t
1
and t

2
plus the distance travelled between times

t
2

and t
3
equals the total distance travelled

between times t1 and t3.)

(ii) If f(t) < g(t) for t1 < t < t2, then

t
2 2

D
t

(f) D
t

(g).
1 1

(This says that the faster moving object covers the

greater distance in a given time.)

(iii) If f(t) = k for t
1

< t < t
2'

then

t
2

D
t

(f) = k(t
2

- t
1
).

1

(This i the well-known 'rormula: distance =

speed x time.)

Having verified that these properties hold, we can now
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conclude

t2 t2

Dti (f)=1 f(t)dt
ti

Example: Suppose that in a drag race a car speeds up in such

a way that its velocity (or speed) is given by

v(t) = 10t

where the time, t, is measured in seconds and the velocity is

measured in feet/second. How far will the car travel in 16

seconds after leaving the starting line?

Solution. According to our formula and results from Chapter 3,

16 16
10

D (v) .jr 10tdt = --.162 = 1280
0 0

2

Further illustrations of these principles will be found

in the exercises.

Let us now consider another situation in which the three

principles apply.

If an object is displaced a distance d by a constant

force F acting in the direction_of the displacement (as in

lifting a weight) the work done (according to a definition in

physics) is F d. In numerous situations we deal with forces

360
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which are not constant but depend on the position of the

object. (For example the force required to displace an object

attached to a spring becomes greater as the spring is

stretched.) In general, thenIthe force required to displace

an object may be represented as a function, f(x), of the

position, x. We let W
a
(f) denote the work done in moving an

object from x = a to x = b with a force f(x) and we accept

from physics the intuitively reasonable properties:

(i) W
b
(f) + W

b
(f) = W

a
(f), if a < b < c;

a

b b
(ii) W

a
(f) < W

a
(g) if f(x) < g(x) for x in [a,b];

(iii) if f(x) = k (constant) over [a,b], then

W
a
(f) k(b - a). (The third property is merely a

reformulation of the condition in the first sentence

of this problem.)

It follows that e(f) =f f(x.;dx.
a

a

Example: Suppose a tow truck is pulling a car which is

becoming increasingly difficult to pull because its tires are

going flat. Indeed suppose that ,he force required is

2000 + 40t2 for time t between 0. and 10. How much work is

done over the indicated period of time?

361 3 7



www.manaraa.com

1:
1

Solution. W
0
(2000 + 40t2) = jr (2000 + )dt

0
0

= (2000)(10) +
40--(103) = 20000 + 13333 = 33333.
3
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PROBLEMS

Suppose that the Jinglehammer Hair Curler factory measures

its power requirements every half hour during an eight-

hour work day and obtains the following results, where

is the power function (in kilowatts):

i 8 8.5 9 9.51010.511 14512/2.5134151+ P4.5 15/5.5/6 16.517

f(t) 0 50 10015014-0145 150 60 0 0 0 50 100140150150150 50 0

(a) Estimate the day's energy consumption by using the
17

trapezoid rule to approximate
J8

f(t)dt.

(b) If the same energy is consumed every day of a

twenty-day work month, how much energy is consumed

during the month?

(c) What is the electric bill for the month if -1-,

electric company charges .0 per kilowatt-hour for

the first 2000 Howatt-hours and 2¢ per kilowatt-

hour for each additional kilowatt-hour?

2. For each of the following power functions f, compute the

energy consumed over the indicated time interval.

(a) f.(t) = 200, [0,10]

(b) f(t) = 3t2, [2,5]

(c) f(t) = sin t, [0,-a]

(d) f(t) = t - t2, [0,1].
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3. Suppose a certain power functi
on is given by f(t) ='200t

for nonnegative t. Find the positive number such that

inter val r
the energy expended over the time LO,B] will be

1000 ki lowatt-hours.

4. (a) Let f be a nonnegative inte9 rble function defined

on an interval [a,b]. if the graph of f Js rotated

around the X-axis, a solid of revolution is gener-

ated. Fora<c<d<blet Vd(f) represent the

volume of the part of this solid bounded by the

planes x = c and x = d.

(i) V
c
(f) = V

c
(f) + V

d
(f) for c < x < d;

(ii) Vdo(f) < Vd(g) if f(>c) < g(x) for all x in

[c, d];

d,
f' 1.1-1.(2!J - L)." =

but ( i i i ) if f(x) = k (constan t)
, When c k

Show that V
c

/ J f(x)d 'except for speciai case8)

(b) For each x in [a,b], A(x) 71.(f( ))2 represents the

area of the cross-section of the solid of revoluticm

in the plane perpendicular to the X -axis at x. For

a < c < d < b, let yd(A)
represent the \olume of

the part of he solid bounded the Planes x = c
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and x = d. Which of the following properties hold?

(i) V
c
(A) = Vc(A) + V

d (A) for c x d;

(ii) V
c
(A) V

c
(E) if A(x) B(x) for all x in [c, d].

(iii) if A(x) = k (constant, then vd(A) = k(d - c).

d d

(c) Does V
d
(A) = f A(x)dx = jr .(f(x))2dx?

c
c c

5. Work problems.

(a) A 40 pound bucket of coal is being pulled up a 100

foot chute by a chain weighing 2 pounds per foot.

Thus when the bucket has been raised x feet, the

force with which the bucket must be pulled is

40 + 2(100 x), that is, the weight of the bucke

plus the weight of the part of the chain not yet

drawn in. How much work is done in raising the

buckei to the top of the chute?

(b) A iodJ of lime is being pulled up the side of a 500

foot c'i'f :n a rainstorm. The load initially

weighed 50u0 pounds, but it is being washed away at

a rate of 2C pounds per minute. If the load is

raised 50 feet per minute, how much work is done

altogether? (1gnor-D the weight of the cables.)
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(c) According to Hookels Law, as long as a spring Is not

stretched beyond its elastic limit, the force on the

spring is equal to kx, where k is the spring con-

stant and x is the distance that the spring is

extended beyond its nature; length. Thus if a

,spring with natural length I :Ind spring constant k

is stretched to a length M, the force required is

given by f(x) = kx, for 0 < x < M - L, and the

M-L fM-L
work reluired is,f f(x)dx = kxdx.

0 JO

How much work is required to double the length of a

2 meter spring with spring constant k = 5 newtons

per meter?

(d) How much work is done in extending a I meter spring

an additional centimeter if the spring constant is

3 newtons per meter?

(e) Suppose that a rubber strap 50 centimeters long has

a "spCng constant" of 2 newtons per meter. How

much work is done in stretching the strap to a length

of 3 meters?

(f) The good witch Zarc i9 flying from her but to the

cave of the glen' Carx, 2000 meters away. Carx i

blowing a wind toward her with a force f(x) = 3x2

(newtons), where x is the distance from Zarc's hut.

How much work wi II be done by Zarc over the course

of the flight?

366
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CHAPTER 5

LOCAL PROPERTIES OF FUNCTIONS

I. Speed and Limits

Since our elementary school days we have all been

familiar with the formula

speed
distance

time

A tyical pr,;em might be: In a drag race a car iravelled a

quarter .7.t mile in 12 seconds. What was its speed? We get

the i i r fat per second by

17,2
speed 12

0

sec
ft- 110 ft./sec.

In miles per hour the calculation would be

1

mile
speed

412

3600
hrs.

= 75 mph.

We all know the speed referred to in this example is

average speed." At the start of the race the speed was zero

- 3 r:
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and as the car crossed the finish line its speed was well over

100 mph.

We have made a sort of apology for talking about a\,erage

speeu, but what other kind of speed is there? What do we mean

by saying that the speed of the car at the instant it crossed

the finish line was well over 100 mph? Presumably everyone

has a feeling for the concepl of "instantaneous velocity" but

a definition of it is no trivial matter. We can probably

agree to the validity of the following method of approximating

the instantaneous velocity at the finish ling- and that wil!

lead us to a definition.

Suppose in the example under discussion we were somehow

able to determine the position of the car 100
of a second after

3
it crossed the finish line; let's say that it was 1 71. feet

past the finish line. Then during tnis
100

second the average

velocity was

1 2 feet
4

sec..

175 feet/sec; or 119.3 mph.

Our reasoning here is that the speed could not have changed

much over such a short time interval so that the instantaneous

velocity will not be much different fro,- :1,:rboe velocity.

The shorter the time interval the less change in speed ;.91!(1 the

c1 iR
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better the average velocity approximates the instantaneous

velocity. Thus if we can imagine that we measured that the

3
inchescar travelled 2

7-2-
c in

1000
second after crossing the

finish 'line we would calculate the average velocity over this

time interval as

2
2-
2

inches
3

1 seconds
1000

67
384

feet

1 sec
1000

174.5 ft. /sec. or 119.0 mph.

We can begin to see that the computation of the exact

instantaneous velocity involves a limiting process. We would

define the instantaneous velocity as the limit of the average

velocity over shorter and shorter time intervals. Such a

definition is entirely impractical as the mea:l!rements of the

distances and times involved would be subject to great in-

accuracies, and it is obviously impossible to make infinitely

many such measurements in order to taKe the limit.

However, in mathematical discussions of velocity we c3a1

not with actual measurements but with mathematical models in

which the positions of the moving objects are expressed

as functions of the time by means of formulas. Here the

definition Jf instantaneous velocity as a limit is quite sat-

isfactory.
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Example: A disc one foot in radius is attached to a motor

which turns at a uniform rate. [By this we mean that for some

constant k the angle 0 through which the shaft turns in a time

t is given by the formula 0 = kt. For simplicity of calcula-

tion we will take k = I so that the angle 0 (in radians) is

numerically equal to the time (in seconds).] There is a small

ball on the rim of the disc. The apparatus

is depicted in Figure I-I.

Light is coming in a window herizon-

tally to the disc so as to project on a

wall a shadow of the disc and ball as

seen in Figure 1-2 where the motor and FIGURE I-I

table are not shown. We

assume that at the starting

time the ball is level with

the center and to right of

it. The problem is to find

a formula for the instantaneous

velocity of the shadow of

the ball at time t.

Discussion: We see that as the disc rotates,the ball moves in

a circle while the shadow moves up and down on a line. Though

the ball travers equal distances in equal times this is not

so of its shad For when the ball is near the top or bottom

io
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of the disc it is travelling nearly horizontally so that the

shadow hardly moves at all, while when the ball is near the

level of the center it is travelling nearly vertically so

that the shadow moves almost at the same speed as the ball.

Solution. We introduce coordinates with the origin at the

center of the disc. The elevation,

y(t), of the shadow above the X-axis

is the same as that of the bap.

Since the angle (measured in

radians) turned by the disc from its

starting position is numerically

equal to the time, we have

= sin t

FIGURE 1-3

The average velocity of the shadow between times t and t is
0 1

distance 01.1) y(t
0

)

time t t
1 0

If we consider a sequence of times t , t , ... with
1 2' 3'

to -)- t as n -4- ... (with none cf the to actually equal to to)
0

0

then the instantaneous velocity at time t
0

is given by

y(t ) y(t ) sin(t
n

) - sin(t )

v(t ) = lim
t - t

0 _ 'jai

0 n-,-.0 n 0
n-

tn - t
0

0

It turns out that we will be able to e,,aluate this limit.

311
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For our purposes it will simplify matters to introduce the

notation

hn = tn - t so that = t + h

0 0

and note that lim h
n

= 0. With this notation

sin(+ + h
n

) sin(t )

v(t ) = lim 0

h
n

a few trigonometric and algebraic manipulations bring this

limit into a form where the value is easily recognizable.

Thus

sin(t + h
n n n

) - sin(t ) sin(t )cos(h ) + sin(h )cos(t ) sin(t )

e) 0 - 0 0 o

h h
n n

sin(h ) I cos(h
n

)

h

n
= cos(t

0

) sin(t
o

)

h
n n

The theorems on limits of sums and products from Chapter 2

assure us that

sin(h
n

) I cos(h
n

o

)

v( :os(t ) lim sin(t ) lim
h h

n-0, n
o

n4-0,

sin(h
n

) I cos(h
n

)

The two limits lim and lim , where h
n

.4- 0
h
n

h
nn.4-0. n.4-...

as n ,4- co, were evaluated in section 2-8 respectively as I and 0.
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Thus

v(t ) = (cos t ) I - (sin t ) 0
00 0

= cos t
0

This important example has shown that in cases where the

position of a moving object is given by formula we can find

the instantaneous velocity by culation, whereas any attempt

to do so by measurement is clearly impossible.

We have shown in this example that

sin(t

t

n

- t
0

) sin(t )

lim co t

n 0
0

provided that lim t
n

= t and that t
n

/ t for n = I, 2,

n-->w

We stress that this holds true for any sequence having these.

properties. Put slightly differently, if we let

then

F( t)

sin(t) - sin(t )

0

lim F, t )

n

t - t
0

cos t
0

for any sequence t , t , ... satisfying the above conditions.
1 2

This holds true because of a property of the function F which

can be expressed quite independently of sequences.
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Limit of a Function at a Point

and

For simnlicIty let us now take t = U whence
0

F(t) =
sin(t) sin(0) sin(t)

t 0

I im F(t ) = I .

11

The graph of F is seen in I-4.

2

1

6 5 4 4 5 6

I I 2
0

FIGURE 1-4

We see a small gap on this graph as it crosses the

Yaxis to suggest the fact that F(t) is not defined for t = 0

since substitution in the formula for F(t) would yield

F(0) =
sin(0) _ 0

0 0

which is of course meaninglesy.

However, we get the impression that the value of F(0)

"ought to be" I. if we filled in the point (0,1) on the

graph in Figure 1-4 we would have a nice smooth unbroken
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curve. In other words, f.pr values of t close to 0 the values

of F(t) approximate the number I very closey. We can pin

down this vague idea by use of some of the inequalities

developed in Chapter 3.

In that chapter we learned that

t-3
t < sin(t) < t

.

for t > 0 with the inequalities reversed for negative values

of t. Hence dividing through by t we obtain "1k

t2 sin(t)
<

3! t

which holds for all values of t different from zero, positive

or negative. Subtracting I
from all members of this inequality

yields

or

-t2 sint (t)
I < 0

0 < 1

<
sin(t) t2

6
for t 0 .

Now we can see what it means to say that
sin(t)

is a

close approximation of I
for values of t close to but not

equal to zero. For example if t is different from zero but

differs from zero by less than Tub- (i.e., 0 < It - 0( <
100)

sin(t) I

000then differs from I by less than
60

(i.e.,
,
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sin(t) t6 2 It -
6

0
60 000

12 1

). Or we could ask how
- ,

close to zero t must be in order to guarantee that
sin(t)

differs from I by less than The answer is obtained
1,000,000

by.solving

t2
6 < 1,000,000

or It - 01 <
1000

And in general, given a tolerance of error, e, then
sin(t)

2

will differ from 1 by less than e provided that 0
t<

e,

i.e.lprovided that t / 0 but differs from 0 by less than 6e.

This analysis provides the basis for a new kind of limit

th-e 1 i-mi t- ol- a function at a poi-nt.--We-wi-rr s-ay-t-hat

lim F(t) = I .

The general definition, motivated by this example is:

Definition: We say that

lim f(x) = L

x÷a

provided that for each positive number e there is a

corresponding positive number d so that If(x) LI < e

whenever 0 < lx al < (S.
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In a more descriptive wording the last line of the

definition could be stated:

"f(x) differs from L by no more than E provided that x

is not equal to a but differs from a by less than

The idea may also be described pictorially as seen in

Figure 1-5.

a

(b)

FIGURE 1-5

In Figure I-5(a) we see the graph of a function f in the

vicinity of a. In Figure I-5(b) we have drawn in horizontal

lines e units above and below L. In Figure I-5(c) we have

drawn in vertical lines 8 units to the right and left of a..

An we see that all points of the graph lying between the

two vertical lines, (excluding the point, if any, lying

directly above a) also lie between the two horizontal lines.

[This is the geometrical equivalent of the statement

If(x) - < E whenever 0 < Ix - al < (5.] if we are able

to find such numbers LS for all E no matter how small,

then we say that lim f(x) = L.
X+a

,
. , 317
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In Figure 5(c) the value of 6 has been chosen as

large as possible. If it had been chosen any larger, the

part of the graph in the vertical strip would lie outside

the horizontal strip. Nothing in the definition requires us

to choose 6 as large as possible. Any smaller (positive)

choice of 6 would have served as well. In practice it is

often convenient to restrict the choice of 6 to be less than

one (or some other fixed positive number). If this is done

then we see that the questions as to whether lim f(x) = L

x÷a

depend only on values of x taken from the interval

[a - I, a + I]. These remarks are comprised in the follow-

-ing theorem whicn is essentially an alternative definition of

the limit.

Theorem I. Suppose that c < a < d. Further suppose that

for each e >0 there is a d> 0 such that

If(x) - LI < e

for every number x in [C, d] which satisfies the inequality

0 < Ix - al < 6 . Then lim f(x) = L.
x÷a
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To clarify the definition of limit we note that the

inequality

0 < - al

occurring in that definition has the effect of omitting the

case x = a from consideration. Hence we remain non-committal

concerning the validity of the inequality

If(x) - LI < E

in case x were given the value a. For most familiar functions

it turns out that lim f(x) is simply equal to f(a). In this
x-4-a

case the inequality

If(x) f(a)I < E

certainly holds true for x = a whatever positive value e may

have. However, in most important applications of lim f(x)
x+a

it turns out (as with lim sit(')) that f(x) is undefined tor

x = a.

In the following section we discuss numerous properties

of limits. We present just one theorem here to tie back in

to the ideas that motivated this presentation.
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Theorem 2: If lim f(x) = L and x , x , ... is a sequence
1 2x÷a

with x
n
/ a but with lim x

n
= a, then lim f(x

n
) = L.

n÷0. n÷o.

In order to prove this theorem we must show that for

every positive e there is a number N such that

If(x n ) LI < 6 whenever n > N.

Let e >0. Since lim f(x) = L there is a positive number 6
x÷a

so that
P

If(x) - LI < e whenever 0 < lx - al <

Since lim x
n

= a we can find N so that lx
n

al < 6

whenever n > N. Since x
n

/ a it follows also that 0 <

Hence for n > N we have

0 < Ix
n

- al < 6 from which If(x
n

) LI < e.

8,90

,380
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PROBLEMS

1. Recalling from Chapter 3 the inequality.

x2 x2 x4
< cos (x) < I - + --

2! 2! 4!

(a) Fthd -the-value L so that

1 m
1 cos (x)

L

)0-0 x2

(b) Find a formula giving d in terms of c so that

1 - cos (x)
L < c whenever lx1 < d

(c) If 1x1 100
find nd a bound on

1 - cos (x)

x2
L

(d) How close to 0 must x be taken in order to guarantee

that

1 - cos (x)

x2
L

1

< 6,000,000
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2. Write a program to compute and print the difference

-

f
quotient

f(x)
x

a(a) for a given function f, a given
a

number a, and a given set of values xi, x , x
n2

for x. Have the program read values for a and n, but

let the values x , x
n
be given by a function SEQ(J).

3. Suppose that the temperature of a certain furnace is

given by the formula T(t) = 20t2 + 40t (degrees Centigrade)

for t between 0 and 10 (minutes). Use the program

written in Problem 2 to calculate the difference

quotient at x = 3 +
7-- for I < k < 50. Estimate the
k2

instantaneous rate of change of the temperature at t = 3.

4. A man jumps from a balloon carrying an altimeter. He

notices that his altitude is given by A(t) = 2280 + 2t - 16t2

(feet), where t is measured in seconds from the time

that he jumps.

(a) How high is he when he jumps?

(b) Estimate his initial velocity by using the program

written in Problem 2 TO calculate several terms of

the difference quotient at t =

(c) Find the time t when he hits the ocean below.
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(d.) Estimate his velocity at impact by calculating

several terms of the difference quotient at t = t1 -

5. Use the program written in Problem 2 to calculate several

X
- 3

-

x
terms of the sequence for some sequence x

n
n

converging 11/4., 3. Try to pick a sequence xn that no one

else in the class is likely to come up with. Do all

sequences obtained by the class seem to converge to the

same limit?

6. Let P be the postage function of Example 6, Section 3-6.

Find two sequences x
n

and y
n
that converge to 2 such

that lim
n

P(x ) / lim F(y ). How does this relate to
n-o-co n4,0

n

Theorem 2 of this section?

7. Prove that lim x sin (--) = 0.
x.+0
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2. Limit Theorems and Continuity

Let us compare the meanings of the two kinds of limits

we have considered, the sequential limit and the functional

We see that

lim a = L
n-)-03 n

tells us that a
n
closely appro,,imatr,s L provided that n is

sufficiently large, while

lim f(x) = L
x4-c

tells us that f(x) closely approximates L provided that x is

sufficiently close to c (but nct equal to c). Naturally we

would suppose that if f(x) closely approximates L and g(x)

closely approximates M, then f(x) + g(x) closely approximates

L + M and f(x)g(x) closely approximates LM, etc. Consequently,

we suppose that the following theorems hold true.

3,9
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Theorem I. If Ilm f(x) = L and lim g(x) = M, then
x +c x +c

Ilm [f(x) + g(x)] = L + M.
x +c

Theorem 2. If lim f(x) = L and k is a constant, then
x +c

lim [kf(x)] = kL.
x +c

Theorem 3. If lim f(x) = L and lim g(x) = M, then
x +c x +c

lim [f(x)g(x)] = LM.

x.+c

Theorem 4. If lim f(x) = L and lim g(x) = M, then
x4.c

f(x) L
I'm 17 provided M 0.

x.4-c

Not only are these theorems true, but tneir proofs are

mere paraphrasing of the proofs of the corresponding theorems

for sequential limits. We therefore omit these proofs. The

conscientious reader who would like to refresh his memory of

the techniques involved is invited to refer to Chapter 2 and

write out the paraphrasing of these proofs.

The only illustrations of functional limits examined so

far have been ones in which the function under consideration

is undefined at the limiting point. For example, in

I im
sin t

t-*0

385 3D



www.manaraa.com

we see that
sin is not defined for t = 0. With most ordinary

garden variety fuoctions this will not be the case. It will

often turn out thal lim f(x) is Just what you would expect it
x-o.cf

to be, namely, f(c). Such a function is said to be continuous

at c.

Definition. f is continuous at c provided that

lim f(x) = f(c).

Example 1: To show that lim x2 = 4.
x42

Solution. Let us first confine our attention to the interval

I < x < 3 as is permissible by Theorem I-I. Now our problem

is to show that for any positive number c we can find a

positive number 6 so that

if I < x < 3 and 0 / Ix - 21 < (5, then Ix2 - 41 < E.

The pattern in such demonstrations is to defer the de-

termination of the value of (5 until the desired value becomes

apparent. We write

if 1 < x < 3 and 0# lx - 21 <

then Ix2 - 41 = Ix + 21Ix - 21 < Ix + 216 < 56.

386
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(The last inequality in this string follows from I < x < 3 so

that lx + 21 < 5.) Now it is apparent how 6 should be chosen

to obtain the desired inequality, 1x2 - 41 < e; namely, we

choose 6 = 3 .

The final write-up of such a demonstrrItion is generally

presented in the condensed form: Let e > U. Choose 6 =

Now if I < x < 3 and 0 / lx 21 < 6, then 1x2- 41 = lx + 211x - 21

< lx + 21 6 < 56 = 555- = e.

This leaves everyone wondering, "How did you have the

foresight to choose 6 = at that early stage of the pro-

ceedings?" The answer of course is that you didn't.

An E, (5
definition of continuity at c is obtained by

replacing the L in the limit definition by f(c) obtaining:

"f is continuous at c provided that for every E >0 there is a

6 > 0 so that

1f(x) - f(c)1 < E whenever 0 / lx - c1 < 6."

However the restriction "0 / Ix - C)" is not necessary in

this case since

If(x) f(c)I

381
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is zero when x = c, and thus less than any positive number E.

Hence we can give the definition of continuity in the following

(often useful) form.

Definition (Alternative): f is continuous at c provided

that for every e >0 there is a d >0 so that

If(x) - f(c)I < e whenever Ix cl < 6-

A number of facts concerning continuity are now entirely

trivial.

Theorem 5. If f and g are continuous at c and k is a constant,

then:

f + g is continuous at c;

(ii) kf is continuous at c;

fg is continuous at c; and

(iv) f/g is continuous at c provided that g(c)

We give only the proof of (1), as the others all go in standard

patterns.

Proof of (i). Let h(x) = f(x) + g(x). By Theorem 1,

lim h(x) = lim f(x) + lim g(x) = f(c) + g(c) = h(c), so that
x-'-c x-'-c x-'-c
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h is continuous at c.

Theorem 5 tells us that once we know some functions

continuous at a point, then all the functions constructed from

them by the ordinary arithmetic prc,:esses are also continuous

at this point. A particularly important class of continuous

functions results from applying this principle to the identity

function and constant functions.

Theorem 6. The functions f(x) = x and g(x) = k (a constant)

are continuous at all points.

Proof. (i) [for f(x)] Let e > 0. Take (5 = e.- Now if

- cl < (5 then If(x) - f(c) 1 = ix - cl < S = e.

(ii) [for g(x)] Let e > 0. Let (5 be an arbitrary

positive number. Now if lx - cl < (5 then

Ig(x) - g(c)I = 1k - kl = 0 < E.

Recall from Chapter 0 (page 44), that all polynomials such as

p(x) = 5x7 - 11x5 4x4 - 2x2 6

are built up by repeated additions and multiplications of con-

stant functions and the identity function f(x) = x. Hence,

all polynomials are continuous at all points. When division

389
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is also permitted,we also get rational functions such as

- x3 + 7

x2 - 3x + 2

Rational functions are therefore continuous at all points

except where the denominators are zero. We see that we now

have a large class of functions for which the evaluation of

limits is merely a matter of substitution.

We hove defined what is meant by a function being continuous

at a point. If a function is continuous at every point of its

domain, we simply call it continuous. And at times, we shall

want to-restrict our attention to functions "continuous on an

inter",r " by which is meant continuous at each point of the

interval.

Another important class of continuous functions is the

class of unicon functions introduced in Chapter 3. We recall

the definition: f is unicon on [a,b] provided that for every

e > 0 there is a 6 >0 so that If(x ) f(x )1 < e whenever
1 2

x and x are in [a,b] with Ix x 1 < 6.
1 2 1 2

Theorem 7. If f is unicon on [a,b] and a < c < b, then f is

continuous at c.

331 464 0
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-ProofT-- tete->- . -Choose a >0 so that 1f (x ) -- f(x ) 1 < e
1 2

whenever x and x are in [a,b] with lx - x 1 < d . Now we
1 2 1 2

see that if x is in [a,b] with 0 / 1x - ci < d then

1f(x) f(c)1 < e. Thus (by Theorem I, Section I) lim f(x) = f(c).

To motivate the next very useful theorem we return to

the subject of speed.

Example 2: Suppose that an object travels in a straight

line in such a way that the distance travelled (in feet)

t seconds after the start is given by

d(t) = 16t2.

What is the velocity 3 seconds after the start?

Solution. The average velocity between time 3 and time t is

the distance travelled divided by the time or

d(t) - d(3) 16t2 - 144
t - 3 t - 3

The instantaneous velocity at t = 3 is .the limit of this

average velocity as t 3 or

.

v(3) = lim
16t2 - 144.

÷t3 - 3
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2
1

The function F(t) =
Ibt

t 3

44 is a rational function, but the
-

limit cannot be evaluated by substituting 3 for t since the

denominator would then be zero. However for t / 3,

16t2 - 144 16(t2 - 9) 16(t - 3)(t + 3)
t - 3 t - 3 t - 3

= 16(t + 3).

We might have some momentary qualms about concluding that

16t2 - 144
lim = lim 16(t + 3)

t - 3
t-4-3 t-4-3

since the function on the right is defined for t = 3 while

the one on the left is not. However, we recall that in the

definition of lim f(x), the stipulation 0 / Ix cl eliminates
x-4-c

from consideration what happens to f(x) when x = c. THis,

lim f(x) depends on the values of f(x) for other values of x

x-+c

but not for x = c. These remarks lead us to conclude that

the statement in formula (I) is valid, and now the limit on

the right can be evaluated by substitution since the function

g(x) = 16(t + 3) is continuous at 3. Thus the limit is

g(3) = 16(3 + 3) = 96, so that the speed is 96 ft/sec.

The technique employed in ±-,:s example may be somewhat

exasperating. We first admonished you about the impossibility

16t2 144
of, substituting 3 for t in the expression , then we
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made a simplification valid only for t different from 3; and

finally, we substituted 3 for t in the result. We have some

sympathy for the student who said, "In high school, they tell

you that you can't divide by zero. In collecie they show you

how to do it." We hope that the following theorem will dispel

any confusion about the above technique.

Theorem 8. If f(x) = g(x) for x X c ano g is continuous at c,

then

lim f(x) = g(c).
x÷c

Proof. Let e > O. Choose 6> 0 so that Ig(x) - g(c)J <

whenever 0 X Ix - cJ < 6. Now if 0 X lx - cJ < 6 then

If(x) g(c)1 = Ig(x) g(c)J < e.

The crucial step in this proof was the ability to substitute

g(x) for f(x) under the condition that 0 X lx - cJ.

The following three theorems are stated without proof since

these proofs are entirely analogous to those of the corres-

ponding theorems for sequences.

Theorem 9. If for some number 6 > 0 we have f(x) > K whenever

0 X lx al < 6, then lim f(x) > K provided that this limit

x÷a

exists.
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Theorem 10. (Squeeze Theorem) If for some number d > 0, f(x)

lies between g(x) and h(x) whenever 0 / lx - al < ó and

lim g(x) = L = lim h(x), then lim f(x) = L.
x-+a x-4-a

Theorem II. (Convex Combination Theorem) If for some d > 0,

f(x) is a convex combination (or weighted average) of g(x)

and h(x) whenever 0 / Ix al < d , and if lim g(x) = L = Iim h(x),
x-)-a x--a

then lim f(x) = L. [Recall that f(x) is a convex combination
x-4.a

f g(x) and h(>) means that f(x) = r(x)g(x) + s(x)h(x) where

r(x) and s(x) are non-negative with r(x) + s(x) = I.]

41;
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PROBLEMS

1
Find each of the following limits if they exist.

(a) lim x csc x
x+0

(b) lim
x+2

(c) lim
x+2

(d) lim
x+4

(e) lim

(f)

(g)

(h)

x - 3
x - 4

x2 7x + 12

x - 4

x2 - 7x + 12

x 4

x - 3
x - 4

lim tan x
7

x

m 11 x
Ji
x+.0 sin x

lim sin (T)
x+0

(i) lim
x-*2

(j) lim
x-*3

2) sin (x5 - 4x2 +
3)

(Hint: For x / 3,

/X- - /3 ().7 iT)( 7 + /-5)

x 3 (x - 3)(7 + /)

395
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(k) lim /3-x - 5
x.4.5

(I) lim
- 3

x
x.4-8

- 8

(m) lim
x + I

x-÷-1 x3 + I

(n) lim
I - x2

x.4-1 2 -

(o) lim x
tx - 2 + 2t

x.4-2
x - 2

2. To which parts of Problem I did Theorem 8 apply?

3. For each function f and number a, find lim
f(x) - f(a)

x - a
x.4 -a

(a) f(x) = x. Do for each of the following values of

a: 2, 4, -3, 0, rr, t.

(b) f(x) = x2. a = 3, 17, t., 71-2 + I.

(c) f(x) = x3. a = 4, -I, t.

(d) f(x) = kl. a = 2, -2, t, 0.

(e) f (x) = a = 3, 5.

(f) f(x) = cos x. a = t
4' 3'

t.

4. For several of the functions f and numbers a of Problem 3,

find lim
f(a + h) - f(a)

11.4-0

5. (a) Show for 2 < x < 4 that 19 < x2 + 3x + 9 < 37,

and thus Ix2 + 3x + 91 < 37.

4
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(b) Show by definition, as in Example I, that

lim x3 = 27.
x.4-3

(c) Show again that lim x3 = 27, this time using
x+3

Theorem 7.

6. Determine where each of the following functions is not

continuous.

x2
(a) f(x) (c) f(x)

x2- 4

x

sin x

(b) f(x) = tan x

7. Give a 6 e proof that f(x) = Ix1 is continuous.

8. Prove that f(x) = /' is continuous at a for every a > 0.

9. Be a "conscientious reader." Write out the proofs of

Theorems I, 2, 3, and 4.

10. Prove parts ii, iii, and iv of Theorem 5.
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3. Composition and Intermediate Value Thecrems .

What can we say about such limits as

lim f(g(x))?
x--a

Suppose that lim g(x) = b and that lim f(y) = c.
x--a y-)-1)

Reasoning intuitively we might say: "If x is close to a,

then g(x) is close to b so that f(g(x)) ought to be close to c.

Ergo lim f(g(x)) = c."
x--a

Alas, this reasoning is not quite valid. But what could

be wrong with it? The answer is that the following unpleasant-

ness could take place:

(i) for some values of x close to (but different from)

a we have g(x) = b; and

(ii) f(b) is undefined or different from the limit, c.

If both (i) and (ii) occur then we will have values of

x near a for which f(g(x)) = f(b) is not close to c. Since

both (i) and (ii) must occur to invalidate the conclusion
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that lim f(g(x)) = c, we will have this conclusion provided

that either of the possibilities (I) or (ii) can be ruled out.

The possibility of (ii) occurrino is ruled out if f is

continuous at b. The possibility of (i) occurring is ruled

out if for some positive number A, we have g(x) / b for any x

with 0 / lx - al < A. (In this case we say that g excludes

the value b in some deleted neighborhood of a.)

Thus we have the following theorem.

Theorem I
(Composition Theorem for Limits)

If lim g(x) = b and lim f(y) = c then lim f(g(x)) = c

x-a y-4-1) x-a

provided that either of the following additional hypotheses

holds:

(i) g excludes the value b in some deleted neighborhood

of a; or,

(ii) f is continuous at b.

There are several guises in which this theorem will be

encountered frequently. Note first that the conclusion of the

theorem could have been written in the form

lim f(y) = Jim f(g(x)).
x-4-a

399

409



www.manaraa.com

Expressed in this way we can think of the theorem as a "change

of variable" theorem. Thus we can replace the variable y by

g(x) provided we also replace yb by x÷a. Of course, the

hypotheses of the theorem must be satisfied.

In the case that f is continuous at b, the conclusion of

the theorem could be expressed in the form

lim f(g(x)) = f(lim g(x)).
x÷a x÷a

Expressed in this way we can think of the theorem as a

commutativity" or "change of order" theorem, i.e.,the order,

of taking the limit and applying the function f can be in r-

changed.

In the case that f is continuous at b and g is continuous

at althe theorem tells us that

lim f(g(x)) = f(lim g(x)) = f(b) = f(g(a))
x÷a x+a

which tells us that the composite function f(g(x)) is con-

tinuous at a. This fact we reformulate as follows.

Corollary: The composition of continuous functions is

continuous.
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The final theorem of this section applies exclusively to con-

tinuous functions. We tend to think of continuous functions as

having graphs which are unbroken curves. This being the case,

if we have a function,

f, continuous on an in-

terval ra,b] and if K is

a number between f(a)

and f(b) then there

should be a number c in

the interval la,bi for

which f(c) = K. That is
Figure 3 -I

to say there should be a point (or perhaps several points as

in Figure 3 -I) where the graph of f crosses the horizontal

line y = K.

As a matter of fact, back in Section 2-2 we presented an

algorithm for finding such points to any desired degree of

accuracy. But we were cheating slightly back there as we

made no mention of hypothesis of continuity necessary to

make the conclusion valid. We were depending on the natural

tendency of students to think of graphs of functions as being

unbroken curves. Now the time has come to nail down this

theorem and give a correct proof.

For simplicity lets just consider the case that f(a) < K

and f(b) > K. We go through the old bisection algorithm for

4 I
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finding a root of

f(x) = K which is flow-

charted in Figure 3-2.

In this algorithm,

unless we hit a root

exactly and terminate

in box 9, we produce

two infinite sequences

L L2, L3, . . and
1' 2' 3'

R R2, R3, . . re-

spectively increasing

and decreasing and such

that

R
n

- Ln b-a

2
n

so that Rn - Ln -0- 0

as n+ co. By our com-

pleteness axiom both

sequences converge to a

common limit which we

call c.

From the continuity

of f at c we know

402
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that lim f(x) = f(c) and since L
n

c as ri.+co and R
n

c as

n4,00 we note by Theorem 2 of Section 5-I that

lim f(L
n

) = f(c) and lim f(R
n

) = f(c).
r1.4.0

But now we also note that

f(L ) < K and f(R ) > K
n n

so that

lim f(L ) < K and lim f(R ) > K

n.4.0 n n

(This obvious conclusion follows from Problem 5(a) of

Section 2-4.) Both of these limits have been shown to be

equal to f(c), hence we may write

f(c) < K and f(c) > K

so that

f(c) = K.

Thus we have proved the desired result which we formulate

below.

Theorem 2. (Intermediate Value Theorem)

If f is continuous on the interval Ea,b], and if K is

a number between f(a) and f(b), then there is a number

in Ea,b] for which f(c) = K.
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This theorem is often verbalized as "a continuous

function takes on all values between any two values it assumes."

It is an extremely useful theorem. A common special case is

that in which K = 0. We state'this case as a corollary.

Corollary. If f is continuous in Ca,b] and if f(a) and

f(b) have opposite signs then the equation f(x) = 0 has at

least one root in Ca,b].

This removes the intuitive aspect from Section 2-2 where

we spoke of "unbroken curves" which we can now interpret to

mean "graph of a continuous function."
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PROBLEMS

I. Evaluate lim
x±a

f(g(x)), where

(a)

(b)

(c)

a =

a =

a =

-3,

2

4 ,

f(y)

f(y)

f(y)

=

=

=

y + I and g(x) = x2 + I

y3 /land g(x) = -x3 + 3x2

and
2(x2 - 7x + 12)

y2 g(x)
(x - 4)

(d) a = 0 , f(y) = y + 8 and
sin xg(x)

x

(e)

(f)

(g)

a =

a =

a =

27,

2 ,

I ,

f(y)

f(y)

f(y)

= tan y and g(x) = sin

= /7 and g(x) = x2 + x + I

= 7.7 and g(x) = x2 + 3.

2. State the values for which the given function is

discontinuous.

(a) f(x) =
1

(c) f(x) = --
x2 x3

(b) f(x) = X2 9 (d) f(x)
3

x2 - 2x - 3
x I

sin v
3. Let f(y) = , and let g(x) = x sin 2 . Recall

from Section I that lim f(y) = I and from Problem 7 of
Y±0

ISection I that lim x sin = O. Is it true that
x±0

lim f(g(x)) = Jim f(y)? Let a
n

=
'
then

x9-0 y-4-0

4*
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(a)

(b)

find g(an)

find f(g(an))

(c) use your results from above to conclude that

lim f(g(x)) does not exist.
x+0

406
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4. Derivatives

The limit_

lim
f(x) - f(a)

x - a
x-)-a

if it exists, is called the derivative of f at a, written

fl(a).

We have already had some experience with derivatives.

In the first section of this chapter we considered a moving

object where position at time t was s(t). Then the instanta-

neous velocity at time to was given by

v(t ) = lim
0 t - t

1-4-t
to

0

s(t) - s(t
o

)

According to the above definitionythe instantaneous velocity

at time to is just the derivative sf(t
0
).

The derivative also has an

important geometrical representa-

tion connected with tangent lines.

From your high school geometry you

will recall that a line tangent

4.1 417
ett
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.!:,z,

to a circle touches the circle at one point and that the

circle lies entirely on one side of the line. We will take

this criterion for tangency as a starting point though we will

presently come up with a more general notion of tangency.

Let us try to apply this

criterion to find the equation

of the line tangent to the

parabolic graph of the function

f(x) = x2 at the point P(1,1)

as depicted in Figure 4-2.

Here we see that we know a

point (1,1) on the desired line Figure 4-2

so that it is only necessary to find the slope, m, in order

to write the equation

y - I = m(x - H.

Consider for the moment a line, k, p?Ircing through the

point (1,1) not tangent to the curve but intersecting it in a

point Q(x,x2) as illustrated in Figure 4-3(a). The slope

of this line is

f(x) x2 I

x - 1
x - 1

mm
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X,X

X-I

Figure 4-3

Now consider that the line 52,
rotates clockwise about the point

(1,1). The point Q moves to the left as seen in Figure 4 -3(b).

After a sufficient rotation, the point Q will appear to the

left of P as seen in Figure 4-3(c). Somewhere in betweenIthe

point Q must have coincided with P. In that position, the line

R. was tangent to the graph as indicated in Figure 4-2.

But what was the slope of the line when this position

occurred? We cannot obtain this slope by substituting I for

x in the expression

f(x) - x2 - I

x - I x - 1

for then we would have our old nemesis
0. The answer is found
0

by taking the limit as x tends to I,

lim
f(x)

= 1 m x2 - I

X - I
X - I
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This limit is easily evaluated by techniques discussed in

previous sections,

lim
x2 - I

= I'm
1)(x + I)

x - I
x - I

= lim (x + = 2.
x±1

Finally, then, the tangent line to the graph of f(x) = x2 at

the point (1,1) is the line through (1,1) with slope 2. The

equation is

y - I = 2(x I) or y = 2x I.

In general, we define the slope of the tangent line

to the graph of a function f at

a to be f'(a). As seen again in

Figure 4-4, this slope f'(a) is

the limiting value as x-)-a of the

a
slope

f(x)
x

f(a) of a secant

line intersecting the graph of

f at (a, f(a)) and (x, f(x)).

a.

Figure 4-4

This definition is more general than the criterion for tangency

discussed earlier in the section. It often happens that the

curve does not lie entirely on one side of the tangent line.

Example I. Find the line tangent to the graph of y = x3 at

(2,8) and find another point where this line intersects the

graph.

410 1,
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Solution: Let f(x) = x3. The slope of the tangent line at

(2,8) is

f'(2) = lim
f(x) - f(2)

x
x.+2

- 2

= lim
x3 - 8

x+2 x 2

= lim
(x - 2)(x2 + 2x + 4)

x+2
x - 2

= lim (x2 + 2x + 4) = 12 .

x+2

The equation of the tangent line is therefore

y - 8 = 12(x - 2) or y = 12x - 16.

The points of intersection of this line with the graph of

y = x3 are found by solving

x3 = 12x 16 or x3 - I2x + 16 = O.

Aided by the knowledge that x = 2 (the abscissa of the point

of tangency) must be a solution/we obtain the factorization

x3 - I2x + 16 = (x - 2)2(x + 4).

'The other point of contact is therefore (-4,-64).

.:71
41j
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In the next example we see the "rationalizing" trick.

(In high school mathematics you often had to rationalize

denominators. In calculus it is usually the numerators which

need rationalizing.) We also need the continuity of the

square root function in this example. You will recall that

in Chapter 3 it was shown that the square root function is

unicon and it is therefore continuous.

Example 2. Let f(x) = /7; and find f'(2).

Solution:. ff(2) = lim
x

x-+2
- 2

/7( if ix +:1m
x 2

x-+2 + b/f

x -
= lim

2

x4.2 (x - 2)(47 + /f)

lim
I I 1

x4.2 47 + /f if + if 2/f

Another notation used in connection with derivatives is

f'(a) = lim
f(x) - f(a)

= lim
f(a + h) - f(a)

x - a
x-÷a h4.0

This notation is justified by use of the composition theorem

' for limits. Letting F(x) =
f(x) f(a) and g(h) = a + h we

a

see that lim F(x) = f'(a) and that lim g(h) = a. Moreover g
x-÷a [14.0

excludes the value a in a deleted neighborhood of 0 so that
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by the composition theorem

lim F(x) = lim F(g(h)) = lim
f(g(h)) - f(a)

x+a h+0 h+0
g(h) a

lim
f(a + h) - f(a)

= lim
f(a + h) - f(a)

= a+ h- a
h+0 h+0

The validity of this "change of variable" can also be

seen geometrically in Figure 4-5

where we again see that

lim
f(a + h) - f(a)

h+0

gives the slope of the tangent

line to the graph of f at

(a,f(a)). Next we see an

example of the use of this notation.

Example 3. Find f'(3)

Solution. f'(3) = lim
h+0

= lim
h+0

= lim
h--0

lim=

h+0

= lim
h+0

= 4.33 = 108.

Figure 4-5

where f(x) = x4.

f(3 + h) - f(3)

(3 + h)14

34 + 4-33h + 6. 32h2 4.3h3 h4 - 34

4.33h + 6.32h2 4.3h3 h4

(4.33 + 6.32h + 4.3h2 + h3)

k
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PROBLEMS

I. For each function f and number a, find f'(a).

(a) f(x) = x2. a = 2, -I, 3, n, and 5.

(b) f(x) = I a = I, 0, 2, t.
X + I

2. For f(x) x +
, find f'(5) by substituting 5 for t

in the expression obtained for f'(t) in Problem 1(b).

3. (a) Find the line tangent to the graph of y = x3 at

the point (0,0).

(b) Does that tangent line intersect the curve at any

other point?

(c) Graph the function y = x3 and the tangent line at

(0,0). Note that the tangent line does not lie

entirely on one side of the curve.

4. Find the slope of the tangent line to the graph of

y = x3 + c at the point (0,c); at the point (c, c3 +

5. For each function f and point (a,b), not on the graph

of y = f(x), find the tangent line(s) to the graph of

414 424
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y = f(x) passing through the point (a,b) not on the

graph of y = f(x). Hint: Find the equation of the

tangent line to y = f(x) at the point (c, f(c)); then

determine for what values of c the line will pass through

(2,0)

2A + I; (8,1)

(2,5)

the point (a,b).

(a) f(x) = 3x2;

(b) f(x) = x2

(c) f(x) = x2;

415
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5. The Derived Function

One of the advantages of the "h" notation introduced at

the end of the preceding section is that it enables us to talk

about f'(x). Just as we write

so we may write

f'(a) = lim
f(a + h) - f(a)

f'(x) = lim
f(x + h) - f(x)

h->-0

In this way, we can think of a derivative function (or derived

function) f', as is certainly suggested by the notation f'(x).

In most simple applications of derivatives, the function f is

expressed by some simple formula, and it is as easy to calcu-

late a gen,ral formula for f'(x) as to calculate f'(2) or

f'(3) or f'(I). We then have the advantage that particular

derivative values can be found by mere substitution. The derived

function f' then has the property that for each number x, the

value of f'(x) is the slope of the tangent line to the graph

of f at the point (x, f(x)).

Example I. Find the point where the lines tangent to the

graph of y = x4 at (1,1) and at (2,16) intersect.

11, .

416
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Solution: Let f(x) = x4 and compare the following with

Example 3 of Section 5-4.

fl(x) = lim
f(x + h) - f(x)

= lim
(x + h)4 - x4

h' h
l-1-)-0 h.+0

= lim M
x4 + 4x3h + 6x2h2 + 4xh3 .1. h4 - x4

h
h+0

= lim
4x3h + 6x2h2 + 4xh3 + h4

f-19-()

= lim (4x3 + 6x2h + 4xh2 + h3)

h-*C)

4x3.

The slope of the tangent lines to the graph of f at (1,1) and

(2,16) are respectively fl(1) = 4.13 = 4 and f'(2) = 4.23 = 32.

The equations of these tangent lines are

y - I = 4(x I) and y 16 = 32(x - 2).

Solving simultaneously, we have

4x - 3 = 32x - 48

or

X
45 24
28 ' Y 7

It is important in using the notation

lim
f(x + h) f(x)

h+0

that we think of x as a fixed number whose value is unspecified

411
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or perhaps just unavailable to us. The results we get are

valid regardless of the value of x or, in other words, these

results are valid for all x for which the derivative exists.

Thus, the domain of f' is taken to be the set of all numbers

x for which f'(x) exists. For example, the domain of f(x) = 7

is [0,03) while the domain of its derived function f'(x)

is (0,0.).

216-<-

The derivative of the sine function has in actuality been

marked out in previous sections. We repeat it here,however,

for good measure.

Example 2. Given f(x) = sin x; calculate f'(x).

sin (x + h) sin x
Solution: f'(x) = lim

h÷0

lim
sin x cos h + cos x sin h - sin x

h÷0

= lim cos x-
sin

h

h sin x- 1 cos h

h÷0

sin h 1- cos h
= cos x-li, m sin x-lim

h÷0 h÷0

= (cos x)I - (sin x)0

= cos x

The derivative of the cosine function can be calculated

by use of the same techniques. This is left as an exercise.

410
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A useful concept in physics is that of acceleration which

is defined as the instantaneous rate of change of velocity.

Acceleration is n vou feel when you "step on the gas" or

apply the brakes. If -n object is moving along a straight

line with velocity v(t) at time t then the acceleration a(t)

is defined by

v(t + h) v(t)
a(t) = lim vi(t)

11-4)

We already know that

v(t) = s'(t)

where s(t) is the position of the object at time t. Thus the

acceleration function is the derivative of the derivative of

the position function s. Accordingly we say that a(t) is the

second derivative of s(t) and write

a(t) = s"(t)

where the double prime denotes the second derivative.

Example 3: An object moves along a line so that its distance

s(t) from the starting point is given by

s(t) = 5t3

419

429



www.manaraa.com

Find the acceleration when t = 3 and when t = 4.

.

Solution: s'(t) = lim
5(t + h)3 - 5t3

h4-0

And now

5 lim
(t3 + 3t2h + 3th2 + h3) - t3

=

h4-0

= 5 lim (3t2 + 3th + h2)
h4-0

= 15t2

s"(t) = lim
15(t + h)2 - 15t2

h4-0

= 15 1 m
t2 + 2th + h2 - t2

h4-0

= 15 lim (2t + h)
h4-0

= 30t.

Therefore s"(3) = 90 and s"(4) = 120.

Second derivatives have geometrical as well as physical

significance as will be seen a little later on. It is also

clear that we may define the third derivative as the derivative

of the second derivative and so on. Applications of these

higher derivatives will be seen much later.

it 420
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PROBLEMS

I. For each function f, find the derived function f'.

(a) f(x) = x (d) f(x) = cos x

(b) f(x) = x2

(c) f(x) = x3

(e) f(x) = T

2. Find the point where the lines tangent to the graph of

y = x2 + 2x + I at (1,4) and (2,9) intersect.

3. Show that for every number c, the tangent lines to the

graph of y = x2 at (c,c2) and (c + 2, c2 + 4c + 4)

intersect at a point on the graph of y = x2 - I.

4. Let L and M be tangent lines to the graph of y = .

Then one triangle is determined by the X-axis, the Y-axis,

and the line L, and another triangle is determined by

the X-axis, the Y-axis and the line M. Show that these

two triangles have the same area.

5. Neglecting air resistance, the height s(t) (in feet) of

a freely falling object near the Earth's surface is
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approximately -16t2 + ct + d for some constants c and

d, where t is measured in seconds.

(a) What is the "initial" height of the object, that

is, the height when t = 0?

(b) What is the "initial" velocity of the object?

(c) Find the acceleration function a(t) = s"(t).

(d) Suppose a man throws a hammer upward from a 200

foot tower with (initial) velocity of 20 ft./sec.

Find the height function s(t) of the hammer.

6. A stone is thrown upward from the top of a building

128 feet high, with an initial velocity of 64 ft/sec.

Find the maximum height of the stone. Hint: When the

stone reaches its maximum height, it stops rising and

starts falling so its instantaneous velocity is zero.

7. A brick falls from a tower 144 ft. high. How much time

does it take to reach the ground and what is the velocity

of the brick when it hits the ground?

8. A cannon ball is shot 400 ft/sec. at an angle 4

relative to the Earth's surface. Thus its height is

given by h(t) = -16t2 + (400 sin 0)t, and its horizontal

distance is (400 cos 4)t.
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(a) How long is the cannon ball in the air?

(b) How far away does it land?

(c) For what value of cti does it go the farthest?

*T.
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6. Derivative Theorems

We have seen the calculations of the derivatives of a

number of functions in the preceding section. We will see

more a little later. Right now we will present theorems for

differentiation of combinations of functions which enable us

to write out the derivatives for a great many functions with-

out going through the limit process.

As a preliminary we formulate a theorem connecting

derivatives and continuity which is needed in the proof of

the product theorem below.

'Theorem I. If fl(a) exists, then f is continuous at a.

Proof: We wish to prove that lim f(x) = f(a). It will be
x-*a

equivalent to prove that lim [f(x) - f(a)] = 0. Now
x.+a

. f(x)
x - a

(a)- f

lim [f(x) - f(a)] = lim (x - a)

x.4-a x.+a

= lim
f(x) - f(a)

- lim (x - a)
x - a

x.+a x-'-a

= ft(a)0 = 0.

424
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The statement of this theorem could be reformulated as: if

for some number x, the derivative f' (x) exists, then

lim f(x + h) = f(x). This is the form to be used in the proof

h-0

of the product theorem.

It is brought out in the exercises that the converse of

Theorem I, above ,does not hold. That is, a function f

may be continuous at a number a without the necessity that

f (a) exists.

In order to simplify the statements of these theorems we

introduce another notation for the derivative - one which has

the advantage of permitting substitutions. We write

D
x

f(x) to stand for f'(x).

With this notation we can write

D
x

x2 = 2x

instead of: letting f(x) = x2, then f'(x) = 2x. Or, in the

following theorem we may write

D
x

[f(x) + g(x)] = f'(x) + gl(x)

instead of: letting s(x) = f(x) + g(x) then

s'(x) = f'(x) + g'(x).

The following theorems are existence theorems as well as

425 CI
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giving the values of the derivatives. They tell us that the

derivatives on the left exist for all values of x for which

all the derivatives on the right exist. The proofs are by

now quite routine,

Theorem 2. D
x
[f(x) + g(x)] = f'(x) + g'(x).

Theorem 3. [kf(x)] = kf'(x).

Theorem 4. D
x
Ef(x)g(x)] = f'(x)9(x) + f(x)g'(x).

Theorem 5. D
x

[l/g(x)] - g'(x)
[g(x)]2

Theorem 6. D
x
Ef(x)/g(x)] f'(x)g(x) - f(x)g'(x)

Theorem 7. Dx[k] = 0.

[g(x)72

We give the proofs of these theorems omitting those of

the trivial theorems 3 and 7.

Proof of Sum Theorem 2: Let s(x) = f(x) + g(x).

Then s'(x) = lim
s(x + h) - s(x)

h÷0

lim
[f(x + h) + q(x + h)] - [f(x) + q(x)]

=

h÷0

426 2136
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= lim
h÷0

= lim
h+0

(
f(x + h) - f(x) +

g(x + h) - g(x)
h h

f(x + h) f(x)
+ lim

g(x + h) - g(x)
h

h-4)

= f/(x) + g'(x).

Proof of Product Theorem 4: Let p(x) = f(x)g(x).

Then p'(x) =

=

=

=

lim
h÷0

lim
h÷0

lim

=

f(x +

(f(x

f(x +

p(x +
lim
11-*()

f(x +
lim
11-*()

h)g(x + h)

+ h) - f(x)

h) f(x)
h

h)g(x + h) f(x)g(x)

f(x)g(x + h) + f(x)g(x + h) f(x)g(x)
h

g(x + h) + f(x)
g(x + h) - g(x)

h

g(x + h) + f(x)olim
h-4-() h+0

f'(x)g(x) + f(x)g'(x).

Proof of Reciprocal Theorem 5. Let r(x)

Then r'(x) = lim
r(x + h) - r(x)

114)

= lim g(x + h) g(x)
h-*C)

lim
g(x) g(x + h)

=

h÷0
hg(x)g(x + h)

g(x + h) - g(x)

I

7-7C)

lim
I .g(x + h) - g(x). I

h.+
g(x) h g(x + h)

()

I
g(x + h) - g(x) I

_
h h÷0

g(x + h)
777 h÷0

I 1( 1 I gl(x)_=
--gT7T'g sx''g(x) [g(x)]2
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The proof of the quotient theorem 6 now becomes a corol-

lary of the product and reciprocal theorems and can be proved

without direct use of limits.

Proof of Quotient Theorem 6: Using the product and reciprocal

theorems we see that

that

f(x) I

D
x

f(x)D
x g(x) g(x)

I I

= Dx[f(x)]-
g(x)

+ f(x)D
x g(x)

I

x)

gl(x)
= fl(x) (

g
+ f(x)

[g(x)] 2

fl(x)g(x) - f(x)g'(x)

As a first application of these theorems, we will show

D x
n = nx n-i

x

for every positive integer n. This formula has already been

demonstrated for n = I, 2, 3, 4 in the preceding section.

We establish the truth of this formula by mathematical induc-

tion. That is, we show that it is true for n = I (as has

already been done) and then show that if the formula holds for

some integer value of n7 then it holds for the next integer

value of n as well. Put differently, we show that if true

for n it is also true for n+ I.

428.4 43



www.manaraa.com



www.manaraa.com

To this end suppose that n is an integer for which

Dx x n = nx n-1 . Then by use of the product theorem

Dx x
n+1

= Dx Ex
n
.x

= Dxxn. x + xn 1 = nx n-1 x + x n 1

= nxn + x n
= (n + 1)x

n
.

Armed with this result we can now differentiate poly-

nomials term by term by repeated use of the sum theorem. For

example:

D (x5 - 3x4 + 7x2 - 5x + 8)
x

= 5x4 - 3.4x3 + 7.2x - 5.1 + 0

= 5x4 - 12x3 + 14x 5

We can also see immediately how to differentiate the

other basic trigonometric functions.

Example: To find Dx tan x.

Solution. D
x
tan x = D

sin x
x cos x

D
x
Esin x]cos x - sin x D

x
Ecos xj

=

cos2x

cos xcos x sin(x)(-sin x)

cos 2 x

cos2x + sin 2 x 1

cos2x cos 2 x

429 43B
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The next theorem and its two corollaries deal with the

behavior of a function in the immediate vicinity of a point

where the derivative exists. This theorem can be expressed

in geometric terms as follows: Suppose that fl(a) exists and

denote by Q. the line tangent to the graph of f at the point

(a,f(a)) [See Figure r.-1(a)1. Now let .0 and k" be lines

through (a,f(a)) on either side of 9. as in Figure 6-1(b).

Then we

Figure 6-1

(c)

can find an interval centered at a so that over this interval

the graph of f lies between .0 and k". An analytical formu-

lation of this theorem is:

Theorem 8. If f'(a) exists and if K and L are numbers with

K < f'(a) <L then there is a number 6 > 0 so that

(I)
f(xx

- a
) f(a)

K < < L for 0 / lx - al < 6.

)

-

f-
Proof: f'(a) = lim

f(xx by definition. In terms of
a

(a)

x±a

430



www.manaraa.com

c and äl this becomes: for every c > 0 there is a 6 > 0 so

that

f(x) f(a)
fl(a) - c <

x

- < f'(a) + c for 0 / lx - al < 6 .

- a

Choosing c so that both f'(a) + c < L and fl(a) - c > K we

have the desired result.

Corollary I: If f'(a) exists,then there are positive numbers

M and 6 so that

If(x) - f(a)I < Mix al whenever lx - al < S.

[Note that we do not exclude the case that x = a.] To see

that this is so we take M to be the larger of IKI and ILI in

the theorem above. Then we have -M < K and L < M so that from

(I) we have

f(x) - f(a)
-M < < M for 0 / lx - al

x - a

which can be rewritten as

if(x) - f(a)1 < M orlf(x) f(a) I < Mix al for 0 lx al < S.
x - a

We identify the property described in this corollary by

saying that f is locally Lipschitzian at a. [We recall from

Chapter 2 that a function was said to be Lipschitzian on an

interval provided that for some number M we had

431
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If(xl) - f(x2)I < Mlx, - x2I

for all x
1

and x
2

in the inter -
slope

val. In our local version of

the property just such an in-

equality holds in a sufficient-

ly small interval about a

provided that x
2

is fixed with

the value a.] The geometrical

meaning of the corollary is

seen in Figure 6-2, where, over

the interval [a - 8,a + (5],the

graph of f is confined to the

shaded region. For an example

of a function which fails to be

locally Lipschitzian at a point,

see in Figure 6-3 the graph of

f(x) = nx in the vicinity of

x = 0.

Slope M

A4

P a

Figure 6-2

f(x)=-?/Tc

Figure 6-3

Corollary 2: If f' (a) exists and is different from 0, then f

excludes the value f(a) in some deleted neighborhood of a.

To see that this is so, refer back to Figure 6-I(c).

Here we see that in case f'(a) > 0 then kt and 2" can be

chosen with positive slopes. Since the graph of f over the

432
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interval [a - d,a + d] lies between 21 and 2" then the graph

of f cannot intersect the horizontal line y = f(a) in this

interval except at x = a. In the case that f' (a) < 0 we

choose 2' and 2" both with negative slopes and use a similar

argument.

Corollary 3: If f'(a) exists and is different from 0, then

in any neighborhood of a, f(x) has values > f(a) and values

< f(a).

Using the same argument as for Corollary 2, we see

that if f' (a) > 0 then for a < x < a + 6 we must have

f(x) > f(a), and for a 6 < x < a we must have f(x) < f(a).
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PROBLEMS

I. (a) Find D
x
xlxl.

(b) Find D
x
Ix'.

(c) Is the function f(x) = lx1

Is it differentiable there?

continuous at x = 0?

(d) What can now be said about the converse of Theorem I?

2. In each case find D x
y. Specify the domain of the

derived function whenever it is different from the

domain of the given function.

(a)

(b)

(.7;)

y

y

y

=

=

=

x5 + 120' - 3x3

7x6 + 4x3 - 2

8

;
(d) y = x + 2

(3) y = cot x

(f) y = (x2 + 4)(x3 + 2x

(g) y = x tan x

(h) v = (x + 3) (x + 4) (x

x - 2
( ) y x + 4

(j) y = sin x tan x

(k) Y
cos
tan x

+ 2x 36

+ I)

5)
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(I) y

- 2

(m) y = x2 + 4

x2 + I

(n) y = 6(x3 + 2)

( o ) Y = cos x - sin x

(p) y = tan x - x3

( q ) y =
1

(x3 - 4x2 + I)

x
Cr) y

4 - 16

x4 + 16

(s) y = Cl + Z)(2 + I)

(t)

( u )

( v )

(w)

(x)

= (3x2 1)2

y = X2 1

x2

3
= 7 x-3
x 7

Y
(x - 2)(x - 3)

x3

I /;,T

y=
9

3. For y = 2x3 + 2Ix2 + 72x + 24 find all points where

the tangent line is horizontal.

e. Find all points where the tangent line to the graph

of y = sin x has slope I.

5. (a) Recall that f is locally lipschitzian at a if

there are positive numbers M and 6 so that

435
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1f(x) - f(a)1 < Mix - al whenever lx al < 6.

Now show that the function y = lx1 is locally

Lipschitzian at 0.

(b) True or false: If a function is locally Lipschitzian

at x = a then it is differentiable at x = a.

6. Let f(x) = x 2 _ I

(a) Show that I < f'(2) < 5.

(b) Find a number 6 > 0 such that I <
f(x) f(2)

x - 2

whenever 0 / lx 21 < 6.

7. Suppose that f is a function for which f'(4) = 6.

Show that there is no interval (a,b) containing the

point 4 such that f is constant on the interval (a,b).

8. In Finlaysonville, the

avenues Ida, June,

Sylvia, and Gale are

straight avenues tan-

gent to the parabolic

street Mayo. Suppose

that the formula for

Mayo Street is y = x2

a b,
436 44 6
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and that Ida Avenue and Gale Avenue intersect Mayo

Street at x = - 2 and x = 2, respectively. June

Avenue and Sylvia Avenue each intersect Mayo Street

between the Ida-Mayo and Gale-Mayo intersections. Show

that the distance from the Ida-June intersection to the

Ida-Gale intersection plus the distance from the Ida-

Gale intersection to the June-Gale intersection is

equal to the sum of the distances from Ida-Sylvia to

Ida-Gale and from Ida-Gale to Sylvia-Gale.

9. For each function f, find the higher derivatives f',

f", f ur, and f(4)(the fourth derivative).

(a) f(x) = x

(b) f(x) = x 2

(c) f(x) = x3

(d) f(x) = x4

(e) f(x) = x 5

(f) f(x) = 4x5

(g) f(x) = sin x

(h) f(x) = cos x

(i) f(x) = 2 sin x 3 cos x

10. Suppose that a witch is suspended by a spring above a

vat of boiling oil and that she bobs in and out of thd:'

oil with height w(t) = 3 sin t (feet).

(a) To what depth does she descend?

(b.) What is her fastest velocity?
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(c) How long is she under the surface each time?

(d) What is her acceleration at maximum depth?

(e) What is her acceleration at the surface?

(f) How loud does she scream?

II. Use the method of finding Dxxn to do the following.

(a) Derive a formula for Dx(ax + b)
n

, where a and

b are any constants.
a)n-1

(b) Derive the formula Dx(xm + a)n = mnxm-
1(xmi.

(c) Prove that if f(x) is a differentiable function

then Dx[f(x)]n = nf(x)n-iff(x).
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Chapter 6

MAXIMA. THE MEAN VALUE THEOREM

I. An Example.

Henri Dupre, the great automobile manufacturer, decides

to market a new luxury car, the

Interstellar, otherwise known

as the Supre-Dupr4. His engin-

eers tell him that to set up the 1a-

production line will cost 70.4Z (7200-0

$175,000,000, after which the
xis -

cars can be turned out at a

cost of $3877 apiece. His

economists predict that the

number of sales at any given
g

N-(z.04a_ .10 5

selling price can be represented t 5
4000 000 8000 10:000

approximately by the graph in Selling Price in Dollars

Figure I-I. (The break in the Figure I-I

graph is due to the exhaustion

of the mass market. Only the

hard-core wealthy will go above $6000 and their reluctance

to buy increases slowly with increasing price.) What

should be the selling price to give M. Dupre the most profit?

N49
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If we designate by N the function in Figure I-1 then

at selling price S the profit is

P(S) = (S - 3877)N(S) - 175 x 106

70.42(7200 - S)(S - 3877) - 175 x 106

=
if S < 6000,

(3.042 x I012)(S - 3877)S-2 - 175 x 106

if S > 6000.

The adjacent table gives the values

values of S. It looks as if

of P(S) for various

S P(S) x 10
-6

P(S) is a maximum near S = 8000, 4000 -152.29
4500 -56.55

but the function is changing 5000 -1.02
5250 13.54

rapidly near S = 5500 and more 5500 19.30
5750 16.25

computation would be needed 6000 4.40
6500 13.86

to make a clear-cut , .se. 7000 18.88
7500 20.93

Actually, the function N(S) 8000 20.97
8500 19.65

as a model of the market 9000 17.40
9500 14.53

is too inaccurate to 10,000 11.26

justify saying more than

that the prices $5500 and $8000

are equally good. M. DuprEl, scornful of the mass market,

unhesitatingly sets the price at $8000.

This example illustrates a type of problem of frequent

occurrence. In these problems, the mathematical

model eventually reduces to the question: at what point

on a given intervai does a certain function assume its maximum

441
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value? Methods for finding such points, and/or the corr

esponding maximum value of the function, are among the

most useful of the applications of the calculus. In this

chapter we shall consider this problem and some related

theory and applications.

In certain cases one wants to get the minimum of a

function rather than the maximum. One way to do this Is

simply to replace the function by Its negative; this

Interchanges maxima and minima, and anything proved about

maxima becomes, with suitable modification, applicable to

minima. Most of our theorems and definitions will be

stated for maxima, leaving to the student the statements

and proofs for minima.

The word "extremum" Is often useful to cover both

"maximum" and "minimum".

2. The Maximum Theorem.

We state here, without proof, the basic theorem

regarding maxima. A proof and discussion of this theorem

wilt be given In Section 7. oz{
Theorem I. If f Is continuous on [a,b] then there Is at

least one point m In [a,b] such that

f(m) > f(x) for any x In [a,b].

We shall call m a maximum point of f, and f(m) the



www.manaraa.com

maximum value, or simply the

maximum, of f.

That both the closure

of the interval and continuity

are needed is seen by the

following examples.

Example I. f is defined on

C-1,1] by f(0) = 0,

f(x) = l/x If x # 0. Obviously

there is no maximum, for given

any m we can always find an x

with f(x) > f(m) simply by taking 0 < x < m if m > 0, or

any x > 0 if m < 0. Of course f is not continuous at x = 0.

Figure 2 -I

Example 2, f is defined by f(x) = x on (-1,1). For

any m satisfying -I < m < I we can find an x, say

x = (I + m)/2, that satisfies the

same inequalities and such that

x > m, i.e. f(x) > f(m), How-

ever,. on the closed interval we

could take m = I and this would

give the maximum.
Figure 2-2

The continuous function illustrated in Figure 2-3 has

a maximum at m and a minimum at b (also at b
I

- the minimum,

or maximum, may be attained at more than one point).

:A, 442
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Figure 2-3

But points like c, d, el, e2 are also of interest. They

could be maxima or minima if the domain of the variable

were sufficiently restricted, as contrasted with points

like n which could not. These "local" extrema are

important enough to be given a specific definition.

Definition: m is a local maximum point of f if

there is a d > 0 such tImi- f(m) > f(x) for any x

in [m-6,m+6].

Evidently an "absolute" or "global" maximum is

either a local maximum or an end-point of the interval,

so Irom.now on we concentrate on the local maxima. The key

theorem is the following.

443
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Theorem 2. If m is a local maximum point of f, and if

f'(m) exists, then f'(m) = 0.

This is an immediate consequence of Corollary 3,

Section 5-6, which says, in effect, that if f'(m) 0

then f(m) is neither a local maximum nor a local minimum.

We thus arrive at the following classification of

possible values for the maximum point:

a. End-points of the interval,

b. Points of non-differentiability of the function,

c. Roots of fl(x) = 0.

The last type are called "critical" points; i.e.,

m is critical point of f if f'(m) = 0.

The most general technique in finding maximum points

is to determine all these points, find the value of f at

each such point, and pick out the largest. Most problems have

various short-cuts, however, some of which are indicated

in the following examples.

Example 3. Little Johnny has a board I" thick and 24" wide

with which he wishes to mai-e a low

shelf for his clothes closet. He

decides to cut it lengthwise and

nail it together to give the cross-

444 4 5 4
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section shown in Figure 2-4. Since he wants to use the

space underneath the shelf as a hidey-hole he wants to make

this space as large as possible. What should be the widths,

x and y, of the boards?

We neglect the width of the saw cuts and assume in

our model that x + 2y = 24. This is certainly goOd enough

for Johnny. We wish to maximize the area A = y(x-2). To

apply our theory we must first of all express A as the

value of a function of one variable. Since the two variables

at present in A are connected by a simple equation it is easy

enough to do this by solving this equation, for one of the

variables in terms of the other and substituting in the

expression for A, thus:

x = 24 - 2y,

A = y(24 - 2y - 2) = 22y - 2y2.

Now our problem is to maximize (i.e., find a maximum point

for) the function A(y) = 22y - 2y2.

First we note that the conditions of our problem

require that we restrict ourselves to the interval [0,11];

certainly we cannot have y < 0, and for y > II we would

have x < O. (One might question whether y = 0 or y = II

make any sense in the physical set-up. Regardless of

whether they do or not we include them so as to get the

closed interval needed for the application of our theory.)

On this interval A(y) is continuous and differentiable, and

so the maximum occurs either at an end-point or at a critical

point. But A(y) = 0 at both end-points (this is physically

-
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obvious, but of course it follows from the form of A(y)

if you want to keep this part of the argument mathematically

pure), so the maximum comes at a critical point. AY(y) =

22 - 4y, so the only critical point is y = 5,5. Hence this

is the maximum point. It follows at once that x = 13.

This last argument is not uncommon. If we have

only one candidate for a local 51)1YiMUM, either a critical

point or a point of non-differentiability, and if the

possibility of an end-point maximum is ruled out by physical

considerations, then the candidate must be the global

maximum. We can also adapt the argument to serve as a

test to tell whether a possible local maximum really is

one; this is useful information in some cases.

Local Maximum Test I. Let f be continuous on [c,d] and

differentiable except possibly at the point m in [c,d].

Let m be either a critical point or a point of non-

differentiability, and be the only point of either kind in

[c,d]. if f(c) and f(d) are each less than f(m) then

m is a locai maximum point, and conversely.

Example 4. f(x) = 1/(1 -x2) gives fl(x) = 2x/(I-x2)2, and

x = 0 is the only critical point. Since f(x) is not defined

at -I and I, to apply Test i we must choose c and d in

(-1,1) and on opposite sides of 0. Choosing c = -1/2

and d = 1/2 we get f(c) = f(d) = 4/3, f(0) = I. Hence 0

is a local minimum point.

7; 446
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Example 5(a). f(x) = x2 + 1. Obviously, x = 0 is a minimum

since f(x) increases with Ix'.

(b). f(x) = I Hence, x = 0 is a
(x2 + 1)5/2

maximum and f(x) decreases steadily as Ix' increases.

This example shows that calculus is not always needed

to determine extrema.

Example 6. Let us take another look at the Supre-Dupre of

Section I. The function P(S) is continuous for all S and

differentiable everywhere but at S = 6000, but we are obviously

interested only in the range S > 3877.

For S < 6000 we have

PI(S) = 70.42(11077 - 2S),

giving S = 5538.5 as a ZAMIT:

critical point. For 10'-

S> 6000, P' (S) = 4000

(3.042 x I012)(-S-2 + 7754S-3),

giving S = 7754 as another.

At these two points the values

6000
I

800I0 10,000

of P(S) are respectively

19.4002 x 106 and

21.1568 x 106. Since
Figure 2-5

these are both greater than

P(.6000) we see that 7754 is actually the maximum point for P.

txamole 7. What are the dimensions of the right circular cylinder

of largest lateral area that can be cut from a sphere of radius R?
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In Figure 2-6 the lateral

area of the cylinder is A = 4wrh,

and r arid h are related by

r2 h2 = R2. If we eliminate

h from these two equations we

get

A(r) = 4wrR2 - r2

as our function to be maximized.

Now we cannot (as yet) differentiate

this function, but if we let
Figure 2-6

B(r) = [A(r)]2, then obviously A will be a maximum if and

only if B is a maximum, and

B(r) = 161.2(R2r2 - r4)

can easily be handled by the methods of this Section. Thus:

131(r) = 16w2(2R2r - 4r3)

equals zero when r = 0 or ±R/17. r is obviously restricted

to the interval [O,R], so -R//7 need not be considered.

B(r) certainly assumes some positive values, and since

B(0) = B(R) = 0, r = R/7 must be the maximum point. For

this value of r we findh = R/7 also.
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PROBLEMS

Formulas for volumes and areas of simple geometrical

figures are given here for reference.

r = radius

Circle: Circumference = 2ffr,

Area = nr2

h = altitude

Circular sector: A = ;.4.20, where 0 is the central angle

measured in radians.

Sphere: Volume =
3

,

Area = 4ffr2.

Right circular cylinder: Volume = wr2h,

Lateral area = 2rrrh.

Right circular cone: Volume = 4mr2h,

Lateral area = nrs, where s = slant height = r2 + h2.

I. Discuss each of the following functions defined in the

given interval with regard to local maxima and minima.

a) f(x) = 4 - x2

b) f(x) = x2 + ;172

C) f(x) =
X - I

d) f(X) = 13 - I5x + 9x2 - x3

e) f(x) = x +
x

f) f(x) = 10x/(1 + 3x2)

46447- 449 449
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g) f(x) = 4.0 - X2 - 3x + 2

h) f(x) = x - 2 sin x

i) f(x) = sin x + 2 cos x - I

J) f(x) = sin x + cos x - x

x in 1 -1,4]

x in [ .Z.,21t]

x in [-2n,2n]

x in [-2n,2n]

2. A man wants to build a rectangular pen adjacent to his

house. There is to be fencing on three sides since the

side on the house needs no fencing. If the man has 100ft

of fencing, what should be the dimensions of the pen in

order that it will have a maximum area?

3. A piece of wire 90in. long is bent In the shape of a

rectangle. Find the length and width that give the

maximum area.

4. Find the dimension of a rectangle of largest area which

has one side along the

hypotenuse of a right

triangle and the ends

of the opposite side

on the legs of the

right triangle.

Assume that the hypotenuse is of length H and that the

altitude to it Is of length A.

451
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5. Find the dimension of the

right circular cone of

maximum volume which can

be inscribed in a sphere

of radius R.

6. Find the dimension of the rectangle of maximum area

which can be inscribed in the ellipse

X 2 v2
+ =

a2 b2

7. Find two positive numbers whose sum is l6 and the sum

of whose cubes is a minimum.

8. Prove that of all rectangles inscribed in a fixed

circle the square has the largest area. Can you do

this without using calculus?

9. An open box is to be made by

cutting out squares from the

corners of a rectangular piece

of cardboard and then turning

up the sides. If the piece

of cardboard is 12 in. by

24 in., what are the dimen

sions of the box of largest

volume made in ,,44.1g way?

451 46i
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10. A closed box is to be made

from a 24 x 64 piece of

cardboard by cutting and

folding as indicated in the

figure. What are the

dimensions of the box of

maximum volume?

24

II. Consider a right circular

cone with a given volume,

and with altitude h and radius of base r. What

relationship between these quantities is needed to

obtain a minimum lateral area?

12. A silo of given volume is to

be built in the form of a

right cylinder surmounted by

a hemisphere. If the cost

per square foot of the

material is the same for

floor, walls and top, find

the most economical

proportions.
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13. One right circular cone is

contained within another,

as shown in the figure. R

and H are given, and we

wish to determine r so that

the lateral area of the

inner cone is a maximum.

Consider the three cases:

(a) H = 10, R = 2;

(b) H = 10, R = 3;

(c) H = 10, R = 4.

14. A cylinder hangs, like a

yo-yo, in a loop of string

tied at B and fastened at A.

If the total length of

string ABCDEB is constant

what shouid be the angle 0

so that the cylinder hangs

as low as -possible?

15. Discuss the local maxima

and minima of f(x) = x sin x.

Find two positive critical

points to 3 decimal place

accuracy and determine

whether they are local maxi-

ma or minima.

453
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16. On the adjacent derrick the

boom, of length b, is held

by a cable going over the

top of the mast, of height

a. Let x be the length of

the cable between the tops

of the mast and the boom,

and h the height of the top

of the boom.

a. Show that

h = f(x) = g(a + b2 - x2).

b. Since fl(x) = -x/a,

x = 0 is the only local

1

extremum, f(0)
2a

(a2 b2), and for x > 0 or x < 0,

f(x) is obviously less than f(0). This would seem to

1

show that x = 0 is the maximum point and . f(a2 + b2)

the maximum value of f. Do you think this is the case?

If not, analyze the situation carefully, considering both

the maximum and minimum of f(x), and explain why the

standard method seemed to break down.
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3. Numerical Methods

The methods of Section 2 are fine if we can find

f/ and solve f'(x) = 0, but suppose one or the other of

these tasks is impossible? In Section 2-2, a method of

approximating the roots of any continuous function was

developed, so if we an get an analytic expression for

f'(x) we can use this method to solve f'(x) = 0 to

as great an accuracy as we wish (or as our machine will

handle). On the other hand, even though Chapter 7 will

introduce a tremendously powerful method of differentiation,

one may encounter functions whose derivatives either

unobtainable in any reasonable form or are so complicated

that even the evaluation of f'(x) for one value of x is a

majot4 task. In such cases it is often best to abandon

the sophisticated methods of Section 2 and go back to

the crude hunting method used at the end of the Supre.-Dupre-

problem.

Even for the simplest case, the type of Example 3,

in which we know that f has exactly one local maximum and

no local minimum in the interval, a general hunting program

is rather complicated. One trouble is that you cannot

compare Just two values of f at each step but you need

three, the idea being to keep the middle value larger

than the others.

455

4.6 5



www.manaraa.com

One flow chart for this case is given at the end of this

section; you may well be able to devise others.

If there is more than one extremum, the problem becomes

much more difficult. One approach is to take a fairly

large number of points, say a hundred, equally spaced over

the interval, and essentially examine each consecutive triple,

x 1-1' xi'
x
1+1'

for a possible extremum; e.g., if

f(x1) > f(x
I-1 '

) f(x
1+1

) then there is a maximum in

(x
1-1'

x
1+1

But if the function has a very tiny bump

in its graph the bump might come between xi and x1

and then it will be missed. In fact, there is no

guarantee in any numerical method that we may not miss

such bumps. If we do find an extremum between and

x.
1+1

for some i then we can divide this small interval

into a hundred parts and repea+ the process.

From the purely mathematical point of view the

computer calculation of a maximum is a trivial problem.

Any given computer can work with only a fixed finite set

of numbers. If, for example, the computer word has ten

digits and sign there are exactly 2 x 1010 numbers that can

be used. (This statement must be modified if "multiple

precision" is used.) Hence, within any interval there are

only a finite number, say N, of values of x that we can

use, and all we need to do i. to compute f(x) for these N

values and pick out the largest. The catch is that N.is

too large to allow this to be done in any reasonable time.
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In Section I we remarked that we sometimes want to

find the maximum point m and sometimes the maximum value

M of the function. A glance at a graph will show that in

the case where m is a critical

point it is much easier to

get M to a given accuracy

+e than it is to get m to

the same accuracy. In Figure

3-I any estimate of m between

the dotted lines will give Figure 3-I

an error in M of less than e. (If the curve bends very

sharply at the maximum e will have to be taken very small

before this phenomenon shows up.) Hence, if M is wham

you want, it is wasteful to require too much accuracy

of m. In a computer program it is best to make the

stopping condition depend on consecutive values of f(x)

as they approach M, rather than on the values of x as

they approach m.

4 6' 7
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Examp, 1. Flow chart for finding the maximum point of a

function on a closed interval.

Given:

'terval, [a,b];

unction, f; having exactly

one maximum point, either local or

at an endpoint, and no other local

extrema;

Measure of accuracy, c; i.e.

if computed maximum point is m,

true maximum point lies in

(m-c, m+c).

General method:

Let c, m, d divide [a,b] into

flour equal subintervals of length hi.

At the i-th step, given c., m
i'

d

with h. = mi - ci = di ml, pick mi+1

as that one of c , mi, dl that gives

the ,largest value of f. Let hi+1 = hi/2,

ci+1 = mi+1 - h di+1 = m + h
1+1

.
1+1, 1+1

Continue until h < c.

Comment: This flow chart does not

take account of roundoff error. That

roundoff can cause trouble is shown in

Table I, which results from using th1s

fir:: chart to find the maximum point of

'
1-.
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h (b-4(2.

FM 4-- f(m)
m f-- (b+a) /z

<

h h/z
c 4-- m-h
d m 4-h

FC 4 f (c)
FD f (d)

4
FC > FM

T

ni 4-- c
rm<FC

-r

FMA'r--FD

L___

Figure 3-2

M f di
Ca Ma da

Figure 3-3
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f(x) = 2.25x - x3 on the interval [0,1], to 8D, (I.e. 8 decimal

places, corresponding to e = 5 x 10-9) . The exact maximum value is

is

at

31/4 = 1.29903810567666

x = /T/2 = 0.86602540378444.

Note that f(m) is correct to 100 while h is still 3 x 10
5

whereas m never gets more accurate than 7D. What has happened

is that the errors in f(m) became so small that they were

obscured by the roundoff in the machine computation of f(m).

At this point the branch conditions, FC > FM and FD > FM became

random choices dependent on roundoff, and the rest of the program

- )(JO() ON [0,1]

is meaningless.

MAXIMUM OF F(X)

VALUE OF H

= X*(2.25

VALUE OF M

.2500000000 .5000000000

.1250000000 .7500000004

.0625000000 .8750000000

.0312500000 .8750000000

.0156250000 .8750000000

.0078125000 .8593750000

.0039062500 .8671E75000

.0019531250 .8671875000

.0009765625 .8652343750

.0004882813 .8662109375

.0002441406 .8662109375

.0001220703 .8659667969

.0000610352 .8659667969

.0000305176 .8660278320

.0000152588 .8660278320

.0000076294 .8660273320

.0000038147 .8660278320

.0000019073 .8660240173

.0000009537 .8660259247

.10000004768 .8660249710

.0000002384 .8660254478

.0000001192 .8660254478

.0000000596 .8660254478

.0000000298 .8660254478

.0000060149 .8660254180

.0000000075 .8660254180

.0000000037. .8660254180

VALUE OF F(M)

.0000000000

.265625000.4

.2988281250
. 2988281250
. 2988281250
.2989234924
. 2990345955
.2990345955
.2990364805
.2990380162
. 2990380162
.2990380968
. 2990380368
.2990381057
. 2990381057
.29903S1057
.2990381057
.2990381057
. 2990381057
.2990381457
. 2990381057
.2990381057
. 2990381057
.2990381057
. 2990381057
.2990381057
.2990381057
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These results emphasize the need for caution in

accepting the outcome of a machine calculation. If the

given flow chart had not been modified so as to output
0

M at each step we would not have detected this situation and

would probably have assumed that the final value was

correct to 8D. What is needed in the flow chart is something

to stop the process when IFC - FMI and IFD FMI are each

less than enan, where cmin is the minimum accuracy,

introduced in Section 2 -I, beyond which the combination of

machine and programming language cannot go. We leave

it to the reader to make the necesary mo,4!fications,

including an adjustment of the ortput e;I us what

has happened and what acc!iracy we are actually getting.
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PROBLEMS

I. Write a flow chart for the method suggested LI the

paragraph of this section.

2. Program either your flow chart of Problem I or the one

at the end of the section.

3. Modify your flow chart and program from Problem 2 to

compute the maximum value of the function to a given

accuracy.

4. Given the function

f(x) ---
4x7

2x16 +x+IP
0 < x < I .

(a) Find the ma-;mum point correct to 6 decimal places.

(b) Find the ma,imum value correct to 6 decimal places.

Answers: .979278, 1.013118.
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4. The Mean V,,fiue Theorem.

The following fact seems

obvious from a picture: If a

curve Joining P and Q has a

tangent at every point then at some

point the tangent is parallel to the

li le PQ. (Figure 4-1(a)) Expressed

in terms of functions this observation

leads to a simple equation That is

extremely useful.

Mean Value Theorem. If f is

continuous on [a,b] and differen-

tiable on (a,b) then there is a

point E in (a,b) such that

f(b) - f(a) = (b - a)f'().

That is, the tangent to the

curve y = f(x) at the point

(&, f(0) has the sare slope as

the line L joining the endpoints;

i.e., f'(
f(b) - f(a)0

b - a

(Figure 4-I (b))

- 462 4 7 9

(a)

(b)

(b, f

( c )

Figure 4-I
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Proof. We simplify the picture by subtracting the linear

function L from f to give

g(x) = f(x) - L(x)

- a
(a)) - f

= f(x) - [f(a) +
f(bb (x - a)],

(Figure 4-I (c)).

We have g(a) = g(b) = 0. If g(x) is ever positive then g

must h've: a IoLal maximum; if g(x) is ever negative then g

has a local minimum; the only remaining case is for g(x) to

be zero for all x, and in that case every point of (a,b)

is both a local maximum and a local minimum. Therefore g

always has at least one local extremum t in (a,b) and so

) - f
0 = g/(E) = fl(E)

f(bb
- a

(a)

which proves the theorem.

The special case of the Mean Value Theorem when applied

functions like g is known as Rolle's Theorem:

If f is continuous on [a,b] and differentiable on

(a,b) and if f(a) = f(b) = 0 then there is a point in (a,b)

for which f/(E) = 0.

If our function f has a second derivative on (a,b)

we can get an equation similar to the MVT (Mean Value Theorem)

but involving f"(t) instead of f'(c). To see the analogy

more clearly write the MVT in the form

f(b) = f(a) + (b - Ofl(E).

6.
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The extended MVT is:

If f' is continuous on [a,b] and if f" exists on

(a,b) then there is a point in (a,b) such that

f(b) = f(a) + (b - a)fl(a) +
I

( b - a)2f"(E).

Proof. This time we confider a function of the form

(I) g(x) = f(x) - [f(a) + (x - a)fl(a) + (x - a)2CJ

where C is a constant chosen so that g(b) = 0; i.e.

C = [f(b) - f(a) (b - a)f/(a)1/(b - a)2.

It is easy tc see that g(a) = 0, sc, applying Rolle's Theorem

to g(x), there is a El in (a,b) such that gl(E1) = 0. Differ-

ent!ation of (I) gives

= fl(x) - [f'(a) + 2(x - a)C],

from which follows g'(a) = 0. We can therefore apply Rolle's

Theorcm to the function g'(x) on the interval 17,&11, to get

gft(r) = 0 inr some E in (a,E1) and hence in (a,b), Since

further differeotiation gives g"(x) = f"(x) - 2C we conclude

that

464
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,74'(0 = [f(b) - f(a) - (b - a)f'(a)] /(b - a)2,

from which the desired result follows on solving for

f( b)

It is evident that this process can be extended to

higher derivatives, and we state without proof a general

theorem of this sort.

First a little notation: f' is the derivative,

f" the second derivative, f"' the third derivative, but

we can't continue this indefinitely. For higher derivatives

we usually write f
(4)

, f
(5)

, ...; this has the advantage

that f (n) is the n-th derivative, etc. For consistency

of the notation it is often convenien' to define

f(0 = f.

Taylor's Theorem. If f, f',..., f
(n) are defined and con-

tinuous on [a,13] and if f
(n+1) is defined on (a,b) then

there is a point E in (a,b) such that

f(b) = f(a) + (b - a)fl(a) + (b - a) 2 f"(a) + 31-(b - a)
3

f"' (a)Tr

+...+ (b - a)
n

f
(n) (a) + n47-7-n- (b - a)

n+I
f
(n+1)

(&).

We shall give a more direct proof of this theorem later

on, from quite a different point of view.

As an example of how the extended theorem can be

used, let us examine more carefully the statement in Section

445
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3 that if m is a local maximum point and if f'(m) a 0 then

it is easier to get accuracy in f(m) than in m. In the

Extended MVT replace a by m and b by x to get

f(x) = f(m) + (x - m)f'(m) + 7(x - m)2f"(E), m < < x.

Now in deriving the EMVT we made no use of the fact

that b > a; the same process could be applied to

give the formula with a and b interchanged. If

in this formula we replace a by x and b by m we get

exactly the same equation but with the inequality

x < E < m. Combi ing Voese two cases, we can state the

EMVT in the form: If f' is continuous on [a,b] and f" exists

on (a,b) then for any two points m and x in Ea,b1 we have

f(x) = f(m) + cx mw(m) + (x - m)2f"(E)

where E is between m and x. The EMVT and Taylor's

Theorem are usually stated in this form.

In our case we have f'(m) = 0, so

f(x) = f(m) + (x - m)2f"(0

with E between m and . Now assume that f" is bounded in

some neighborhood of m; that is, that there is a 6 > 0 and

a B > 0 such that If"(x)1 < B for all x satislyinc

< 6. Then for lx ml < 6 we have

486
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If(x) - f(m)I < 40 Ix - < 4a 62.

Thus f(x) approaches f(m) like 62, much more rapidly

than x approaches m.

In the particular case of ,Ixample I of the last section

we have

f(x) = 2.25x - x3, f"(x) = -6x.

Since m = 3/2 = .87, for Ix - ml < .1 we will certainly

have If"(x)1 < I.

Hence

If(x) - f(m)1 < .5 Ix - m12.

Now if x is a 7D approximation to m then Ix - ml < 5 x 10-8,

and so

If(x) - f(m)( < 2 x 10-15.

This is less than the accuracy of the machine on which

Example 1 was run, so it is not surprising that we were

unable to get m to more than 7D accuracy.

461
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PROBLEMS

I. In geometric terms, the Mean Value Theorem states that

there is a between a and b such that the tangent

at (&,f(0) is parallel to the line Joining the points

[a,f(a)] and [b,f(b)]. In each of the problems (a)

through (e) a curve and the end points of the interval

are given. Find a value of satisfying the require-

Theorem.ments of the Mean Value

(a) f(x) = x2

(b) f(x) =

(c) f(x) = x3 - 9x + I

(d) f(x) = x2 - 2x - 3

(e) f(x) = x3 - 2x2 +

a =

a =

a =

a =

3x - 2 a =

2. Suppose that fix) = 2x
2/3

and let a =

2

25

-3

b

b

b

=

=

=

3

36

4

-I b = 3

0 b = 2

-I and b = +I.

Show that there is no number between a and b

) - f

a
(a)which satisfies fl(0 f(bb

, given that
-

f'(x) =
3

Explain,and sketch t.-:e graph.

3. Use the Mean Value Theorem to show that /77rT - /7

approaches zero as x increases with:Jut bnund. Can

you find a way to show this without using calculus?
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4. Prove Taylor's Theorem for the (;use n = 2. [Use the

results of Problem II, Section 5-6, to differentiate

the powers of (x - a).]
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5. Approximations.

The Mean Value Theorem and its extensions are basic

tools in the approximate computation of values of

functions. Their application is best shown by an example.

Example I. What is the approximate value of sin 610?

This is a pretty vague question as it stands. 0 is

an approximation, and so is 100, but the errors are of

the same or greater orders of magnitude than the value

itself. Sin 60° = .86603 is a much better approximation,

but this is so obvious that presumably we want a still

better one. To get this we apply the MVT to the function

f(x) = sin x; since we are going to get derivatives we

will express all angles In radians. For convenience let

a = w/3 (=60°), b = w/3 + w/180. Then the MVT gives

or

f(b) = f(a) + (b - a)fl(E), a < < b

sin b.= .86603 + Try cos ,
IT TT

< E < + Tea

Evidently cos is close to cos(w/3) = .5, so

sin b = .86603 + .57-77 - .87475.

This is a much better estimate than simply .86603.

[Various symbols are used for "approximately equal to":

470 4 S 0
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4, =, and possibly others. We are using = since it

seems to be increasing in popularity, possibly because it

is the one most apt to appear on a typewriter.]

This type of computation is common in the rough

analysis of certain types of errors. The word "error" in

this connection does not mean "mistake" but refers to the

difference between the exact value of a quantity and a

computed value. Essentially all computations involve

errors, and error analysis is one of the most important

parts of numerical mathematics.

From this point of view we can replace the question

of Example I by the following.

Example 2. A pole 100

ft. long leans against

a vertical wall. The

base angle x is mea-

sured and found to be

60 °, giving 86.6 ft.

as the height H at

which the pole touches

the wall. However

there is a possible

error of about 10 in

t. 411

481

Figure 5-1
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the measured value of the angle x. What is the possible

error in the computed height?

We wish to find the change in H corresponding to a

change in x of 10 = w/180. The phrase "increment of x"

is usually used in these situations and designated by

the symbol Ax. Similarly we have pH, the increment of H.

What v:e do is to apply the method of Example I, using x,

x + px, H, and H + pH respectively for a, b, f(a) and

f(b). The MVT gives directly

pH = f'( )Ax,

which, approximating f'(0 by f'(x), gives

pH = fl(x)Ax

= (100 cos x) Ax

= 50 (w/180)

= .9 ft.

Thus, H can vary from 85.7 to 87.5, and a reasonable

1statement about the height is that it is about 867 ft.

with a possible error of about a foot.

The general approximation formula,

tf(x) = f/(x)Ax,

is by far the most useful one in approximation problems.

ti
412
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Now let us return to Example 1 and ask the further

question: "Just how accurate is the value .87475?" Of

course we cannot hope to answer this question exactly,

for if we could we would merely correct the computed

value and get the exact value of sin 61°. What we want

Is an "error bound," a number B (presumably small) for

which we can prove that

bin 61° - .874751 < B.

Such an error bound could be obtained by a more careful

examination of the quantity cos, but it is easier to

apply the extended MVT. This gives us

or

sin b = sin a + (b - a)cos a + ,r (b - a)2(- sin 0,

sin 61° = .86603 + 47 (.5) - (Tie2sin E

from which we get

'sin 61° - .874751 < ( )2 < 1.6 x 10-4,

since certainlylsin < I.

Do we want more accuracy? Simply use the next case

of Taylor's Theorem:
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sin b = sin a + (b - a) cos a + (b - a) 2 (- sin a)

+ (b - a)3(- cos E)

.86603 + (.5) + ( )2( -.86603)+

+ Trzy31T)3( - cos E)

= .86596 + E

where 1E1 < (Tir)3 < 3 x 10-6. For still higher

accuracy we merely use more terms in Taylor's Theorem.

Figure 5-2 gives a graphic interpretation of these

results. We replace 61° by x and consider the two

approximations

and

Y1 = sin a + (x - a) cos a

= sin a + (x - a) cos a + 71 (x - a)2(- sin a).

The first is the linear approximation, given by the

tangent line. This is the "best" linear approximation

in the sense that if yo = p qx is any other first
sin x - yl

degree approximation then g.m 0; that is,a s n x - yo

the error sin x - y1, is an order of magnitude smaller

than the error sin x - y0. In the same sense y2 shown

by the dotted line in the figure, is the best quadratic

approximation in the neighborhood of a.

4 8
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Figure 5-2

The replacement of a function by its linear approxi-

mation is a very common device in applied mathematics. Quite

frequently when a model of a physical problem is first set

up it is too complicated for mathematical analysis. It

must then be further simplified, and one way to do this is

to "linearize" some or all of the functions that appear in

it. For example, when one sets up the equation for the motion

of a simple pendulum swinging through a small angle, the

function sin 0 comes into the equation. This equation is

impossible to solve in elementary terms, so one linearizes

it by replacing sin 0 by

sin 0 + (0 - 0)(cos 0) =0,

and with this modification the equation is readily solved to

give simple harmonic motion.

8 ,
415
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Of course linearization introduces an error, which

depends on the size of the neglected term .. (x - a)2f"(E)

in the EMVT, in addition to whatever errors were involved

in setting up the model to begin with. It is up to the

model maker, in cooperation with the mathematician, to de-

cide whether the extra errors can be tolerated.

It is worth mentioning that one nice thing about

computers is that they are much less dependent on linearity

than classical mathematical analysis. A computer will solve

the pendulum equation Just about as easily with sin 0 in it

as with sin 0 replaced by 0. On the other hand, in neither

case will it tell you anything about the relation of the

solution to simple harmonic motion.

486



www.manaraa.com

PROBLEMS

I. A wooden cube, supposed to be 3" on a side, was found

to be 3.03". it was brought down to size by sandpapering

off the excess. About how much material was removed?

Using linear approximations, find approximate values,

with error bounds, for each of the following:

(a) 4.12

(b) tan 47°

(c) cos

3. Compute VT to 3 decimals by using / 4-1773. and the

fact that FT = 9.

4. Since the attraction of gravity falls oi'f inversely as

the square of the distance from the center of the earth,

the weight of an object h feet high is given by

R2
w(h) = w(0)

(R + h)2

where R is the radius of the earth and w(0) the weight

of the object at the ground.

411
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(a) We ordinarily use the approximation w(h) = w(0).

Show that for an object 100 miles high this is in

error by about 5% [use R = 4000 miles].

(b) Show that for the same object the linear approxi-

mation is in error by less than 0.2 %.

(c) Show that the quadratic approximation is in error

by less than 0.01%.

(d) How high could one go before getting a 1% error

in the linear approximation? In the quadratic

approximation?

5. (a) Make a flow chart for a program to approximate

sin x by a fifth degree polynomial in x, for

0 < x < .5, and to give an error bound. [Use

Taylor's Theorem].

(b) Write the program from (a) and use it to coipute

sin x for x = .2 and .5.

4 88
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6. Monotone Functions

Between an adjacent local maximum and local minimum a

curve steadily rises or steadily sinks - that is, the

function is monotone. It seems evident that a tangent to

a rising curve has a positive slope, and conversely that

if a curve has a positively sloping tangent at every point

then it is rising. We shall prove the correctness of these

observations and relate them to the behavior of a function

at its oxtremum and critical points.

We shall state our theorems for increasing functions

and positive slopes, leaving to the student the statements

and proofs of the corresponding theorems for decreasing

functions and negative slopes.

If f is increasing on

an interval [c,d], then each

chord drawn on the graph of f

between points (x, f(x)) and

(x + h, f(x + h)) must have

its slope,

f(x + h) - f(x)
h

greeter than or equal to zero,

regardless of the sign of h.

419 4 fi.9

x+h x x+h

hG0 h>1011

Figure 6-I
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Hence

f(x + h) - f(x)f'(x) = lim > 0
h-0.0

whenever this limit exists.

We state this result as

Theorem I. If f is increasing on [c,d] and if >. is any

point of (c,d) at which f'(x) exists then f'(x) > 0.

Knowledge of monotonicity thus tells us something about

the derivative. Can we somehow reverse our argument and use

the derivative to tell us about possible monotonicity?

Example I of Section 2 shows the need for caution,for this

function has a negative derivative, -x -, at all points

except x = 0, and it certainly is not decreasing over the

interval. We obviously need to say something about all

points of the interval.

Theorem 2. If f is continuous on [c,d] and if f'(x) > 0

for all x in (c,d) then f is increasing in [c,d].

Proof. If p and q are any two points in Ec, with q > p

we have by the MVT,

f(q) f(p) = (q - p)f/().

By assumption f/(E) > 0, and so f(q) > f(p).

41'n480
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Theorem 2, but not Theorem I, Is true If f'(x) > 0

and "increasing" are replaced by f'(x; > 0 and "strictly

increasing." We leave to the student the verification of

this statement.

Example I. Determine the behavior of the function

f ( x ) =
x3

x2 -

with regard to domain of definition, local extrema, critical

points, and domains of monotonicity. Use this information

to graph the function. The discussion of this example is

divided into several parts, each devot-ld to one aspect of

the function's behavior. Be sure you understand each part

before going on to the next one.

(a) First of all it is evident that the function is

defined and differentiable for all values of x except -1

and i. Hence the three intervals (-.0,-1), (-1, I), (1,co)

must be considered separately.

Since

(b) The critical points are the solution of fl(x) = 0.

(x2 - I) I)
x
x3 - x3

x
(x2 - I)

f'(x) (x2 1)2

- I) 3x2 - x3(2x)

(x2 1)2

x2(x2 3)

(x2 1)2

L 481 , 4 91
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the critical points are VT, 0, IT .

(c) f is monotone in each of the intervals (-00, -IT),

(-7, -I), (-I, 0), (0, I), (I, T), (T, co). To determine

where f is increasing and where decreasing we need check

f'(x) at only one point in each interval, for fl(x) cannot

change sign in one of these intervals. We easily see, with-

out bothering to compute exact values of f'(x), that for

x = -2,-I.5,-.5, .5, 1.5, 2,

f'(x) is I +

Hence f Is increasing on (-0,, /T) and (T, 00) and decreasing

on (-3, -I), (-I, I), and (I, T).

(d) Coming now to the extrema, note that with no further

computatior we can tell

that IT is a local

maximum point, .7 is a

local minimum point, and

the remaining critical

point, 0, is not an

extremum point at all. N, .
However, to graph the

function we do wish to

compute its values for

all significant values

of x, and we find

4$2 '4 9 2

Figure 6-2(a)
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f(x) -17/2 0 3T/2

Note that the local maxi-

mum is less than the local

minimum. (Figure 6-2(a)).

(e) To draw a good

picture of the curve we

need two more bits of

inl,rmation. First, how

does the function behave

in the neighborhood of the

points where it is not

defined? To see what

happens near x

x = I + h and

a function of

(I +

h(2 + h)

1 //
1

/1

Figure 6 -2(b)

= I put

express y

I

as

4

1 3

h. We get
X

I

h)3
1 1

Now for very small

values of h,

(I + h)3/(2 + h) is approxi-

mately 7, and so y behaves

much like 7F. (Figure 6-2(b)).

?,11.1,.., 483

.493

Figure 6-2(c)
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(f) Finally, what happens as x 4- 0.; i.e. as x gets

larger and larger without bound? To see this divide

numerator and denominator of f(x) by x k
, here k is the

smaller of the degrees of the two polynomials. In our

case these degrees are 3 and 2, and dividing by x 2 gives

x

x2

Now as x .4. m 4. 0
'
and so for large values of x' 72 x, f(x)

is approximately x, (Figure 6-2(b)).

(We can do better if we wish,

f ( x )
1 x
I '"" ........

x2

which is positive for x > 0 and negative for x < 0. Hence

our'graph lies above the line y = x on the right and below

it on the left.)

We now have so much information that the graph

practically draws itself. The values at x = ±3/4, i.e.

y = ±I, give a little more firmness to the middle branch.

The carefully drawn and labeled graph is shown.in Figure

6-2(c).

Comments on the example.

I. Lines like y = x, x = I, and x = -I in this example

are called asymptotes of the curve (or to the curve). A

484 4.94
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formal definition of this term is complicated and is not

needed for our description of. graphs so we merely say that

an asymptote is a line that "gets arbitrarily close" to

the curve as we move out along the line. The two most

common ways of determining asymptotes are illustrated in

(e) and (f); i.e. finding the behavior oi f(x): as x

approaches a value where a denominator of f(x) becomes

zero; and as x or x

2. Part (d) illustrates the second important method

of testing for a local maximum.

Local Maximum Test 2. Let f satisfy the same conditions

as in Test I. If f'(c) > 0 and f'(d) < 0 then m is a

local maximum, and conversely.

An advantage of Test 2 over Test I is that no

functional values need be computed. We need only determine

whether f'(c) and f'(d) are positive or negative. As in

Test I, c and d may be chosen wherever convenient. We can

even avoid using any particular points; for instance, in

texting x = 5 we see from the form of fl(x) that its sign

depends only on the factor x2 3, since x2 and (x2 - 1)2

are never negative, and that x2 3 is negative if x is

slightly less than /5 and positive if x is slightly more.

Hence E is a local minimum point.

49;3
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3. If f has a second derivative at m there is still

another test that tells (in most cases) whether m gives

a maximum.

Local Maximum Test 3. Let m he a critical point of f at

which f"(m) exists. If f"(m) < 0 then m is a local maximum

point (but not necessarily conversely).

Proof. Since f"(m) =
x4-m
1 m

x
ff(x) -

-

f

m
t(m) < 0, for x

sufficiently near to m we must have

f'(x) - f'(m) f'(x) < 0.
x - m x m

Taking x slightly larger than m gives x - m > 0 and so

f'(x) < 0. Taking x slightly smaller than m gives f'(x) > 0.

By Test 2, m then a local maximum-point.

In our example we can find f"(x) by writing f'(x) in

the form

Then

f'(x) _

x4 - 3x2

x4 - 2x2 + I

f"(x)
(x4 - 2x2 + 1)(4x3 - 6x) - (x4 - 3x2)(40 - 4x)

(x4 - 2x2 + 1)2

t% 486 4 fi
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2x (x2 - I)[ (x2 - I) (2x2 - 3)' - (x4 - 3x2)23

(x2 - 1)4

2x (x2 + 3)

(x2 - 1)3

Indicating the signs only, we have

- +)(

.
at x = -/T, f"(x) =

+
= therefore a maximum;

,

(

at x = !, f"(x) =
+

+
+) = + therefore a minimum;

at x = 0, f"(x) = 0 (+) = 0, therefore no conclusion

can be drawn.

This example illustrates the two disadvantages of Test 3;

the relative difficulty (in some cases) of getting f"(x),

and the fact that we get no information at all if f"(x) = 0

at the tested point. In the latter case the function may

have a maximum, a minimum, or neither, as is shown by the

cases _x4, x4, x3. Nevertheless, if f"(x) is easy to find

Test 3 is usually tried first, and then one of the other two

in case of failure.

4. To graph a function it is rarely necessary to get

all the information that wedid in this example. On the

other hand, there are cases where additional information

may be needed. How much, and what kind of information is

useful depends on the particular function, but also on our
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reason for drawing the graph. A graph, after all, is simply

a method of describing a function - highly inaccurate in a

quantitative sense bu very good qualitatively - and it

should tell us those things about the function that we want

5to know. For example, before evaluating 1:
./ 1

dx we

should know something about the behavior of the function.

Where is it negative; is i+ monotone; does it have extrema?

However, the precise location of a local extremum is of

little importance. All in all, considerable practice with

a wide variety of functions Is needed before one acouires

the knack of quickly sketching a given function with a de-

gree of roughness appropriate to the situation.

PROBLEMS

I. Discuss each of the following functions with regard

to local extrema, critical points, and-doma-i_as

monotonicity. Sketch the graph of each function.

a) f(x) = x - x2

b) f(x) = x I

x2 + 3

c) f(x) = 9 - xL

d) f(x) = (x - 3) V7

488 4 9g
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e) f(x) = 3x
I

x2 + x + 3

f) f(x) =
X2

+ x2

g) f(x) = x3 + 6x2

h) f(x) = 2 cos x + cos 2x

[-4, 0].

[0, 2r]

2. Find all the critical points of f(x) = x + sin x.

Prove that this curve is always increasing and hence

has neither a local maximum or minimum. Sketch the

curve.

3. Find constants a, b, and c, so that the curve

y = ax2 + bx + c goes through the point (3,0) and has

a local extremum at (1,2).

4. Show that (8,8) is the point of the curve x2 - 8y = 0

closest to the point (2,11).

5. Graph y = 4.<- (See Problem 3 Section 4).

6. The cost of manufacturing x articles is

c(x) = a + bx. And they can be sold at a price p(x),

given by p(x) = m - nx. Show that the profit is a

maximum when x = (m - b)/2n.

489 4D



www.manaraa.com

*7. Existence of a Maximum.

Theorem. On a closed interval a continuous function has a

maximum.

Let f be continuous on [a,131. We wish to show the

existence of a point m in [1,13] such that f(m) > f(x) for

any x in [a,b]. Our procedure will be to construct an

algorithm to determine such a point m if there is one, and

then to prove that the determined point does have the required

property. The continuity of f will be used only in the

latter step - the algorithl converges whether or not f is

continuous.

The algorithm, a flow

chart for which is given in

Figure 7-1, is a wiriation

of the familiar bisection

process, the critical step

being the branch condition

which to us whet)er we

choose the right or the

left half of the bisected

segment. This condition

is the following:

b, b

16 E- tat. + b0/2.

C5TaTemeriT M

auki
bits Co

I.

cli.+1 4-- 0-

Figure 7-1

490

5V 0



www.manaraa.com

Statement M : There is an x in [ai, c] such that f(x) > f(y)

for any y in [c, bi].

If there is such an x we choose the half-segment containing

that is, the left half; if not we choose the right half.

Statement M is rather complicated and deserves some

discussion. But for the present we make only two comments:

first, at each step statement M is either true or false,

that is, either there is such a point x or there isn't;

second, if f has a maximum on the interval Statement M will

select the half-interval containing the maximum (it will

select the left half-interval if both contain a maximum).

The proof that the sequences al, a2, and bl, b2,

satisfy the conditions of our Axiom of Continuity and so

converge to a point m is the same as in earlier applica-

tions of the bisection process and we shall not repeat it.

We have now to prove that f(m) > f(x) for any x in

[sob]; Let x = xi be any such point. If xl = m the

inequality is certainly true, so suppose xi # m. There

must be a step in the algorithm at which rand m are

separated, i.e., one in a left half-interval and one in a

right. Now at this point the algorithm chose the half-

interval containing m, not xi, and so there must be an x
2

in the same half-interval as m with f(x
2

) > f(x
I

).
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Now we proceed with x2 Just as we did with xl. If

x2 = m then we have f(m) > f(xl) as desired; if not there

is some further step at which x
2

and m are separated and

there is an x
3

in a smaller sub-interval with m such that

f(x
3

) > f(x
2
). Continuing the process gives us

f(x ) < f(x ) < f(x ) <I2 3 **

If the process stops with xk = m we have f(xl) < f(m) as

desired. if not we have a sequence xi, x2, which

converges to m (details of proof left to the student).

Since f is a continuous function f(xl), f(x2),) con-

verges to f(m). Since each f(xn) > f(xi) it follows

(Section 2-4, problem 5(a)) that the limit f(m) > f(xl),

as was to be proved.

Note that continuity of the function comes in only at

the very end. It is a useful exercise to carry through

the steps of the proof up to this point for Example 2 -I

and for Example 2-2 extended to the closed interval by

f(-I) = f(I) = 0.

We have said that Statement M is either true or false,

but the question arises "How do you tell?" In some special

cases, like Examples 2 -I and 2-2, it is easy enough, but is

there a general method that will work for any function, or

at least any continuous function? The answer is "no," the

502
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basic trouble being that we would have to consider an

infinite numbe;- of x's and an infinite number of y's

and this can't be done in a finite time. Because of

this situation this proof of the existence of a maximum

point m is said to be "non-constructive." it has been

proved that this state of affairs cannot be avoided -

any proof of the existence of a maximum is necessarily

non-constructive. This, of course, does not prevent

us from using our knowledge of the existence of a

maximum to help us in finding ways to locate the maximum -

which is exactly what we did in Sections 2 to 5.
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Chapter 7

THE CHAIN RULE

I. Differentiation of Composite Functions

In Chapter 5 we developed formulas for computing

derivatives of certain basic functions, notably xn, sin x,

and cos x. Theorems 2 to 6 of Sections 5-6 enable us to

differentiate complicated functions formed from these by

the four arithmetical operations. But these will not

even enable us to differentiate the simple function

f(x) = /777-77 which arose in Chapter 2 in consideration of

a circle. Is this the best we can ever hope to do? No, we

can certainly derive other basic formulas as is done in the

last problem in the Chapter 5, by clever tricks; or we can

go back to the definition of a derivative and try to derive

other formulas, as we did for sin x. But such methods turn

out to be unnecessary unless we encounter completely anew

types of functions.

The secret lies in the one derivative theorem we have

not yet developed, the formula for the derivative of

495
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Composite function. Take the function f(x) = /747777 .

Introducing the functions

g(x) = 4 - x2, h(y) = /7 ,

enables us to write f(x) = h(g(x)). If we can express

ft in terms of gl and ht we will have what we want, for

g' and hl can easily be calculated (for ht see Example 2,

Section 5-4). The Chain Rule tells us how to do this.

How, in general, would we go about getting the

derivative of f(x) = h(g(x)) at the point a? By definition

fl(a) = lim = I'
f(x) - f(a)

lim
h(g(x)) - h(g(a))

x÷a x - a x÷a x - a

Let y = g(x) and b = g(a). Then we are tempted to say;

since certainly y b as x a;

fl(a) = lim
x÷a

h(y) - h(b)
x - a

h(y) - h(b) g(x) - g(a)
y - b x - a

lim m
h(y) - h(b)

=
x÷a y - b

=
h(y) - h(b)

y - b

g(x) - g(a)
xa x - a

g(x) - g(a)
xa x - a

= hl(b)gt(a) = hl(g(a))gl(a).

Unfortunately this "proof" resembles the one in aerodynamics

about which it was remarked that all the steps were wrong
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except the last one. The trouble is that as x a, but

always with x # a, we do have y 4- b, but not necessarily

with y $ b. (If you want an example consider the function

g(x) = x sin(1/x).) This makes it meaningless to write

1:m L11122121
y - b

since the denominator may be zero and the function not

defined for values of x arbitrarily close to a. For the

same reason we cannot replace j(Irg by pg.

In spite of its inaccuracy this "proof" indicates why

the chain rule has the form it does. (The aerodynamics

"proof" has the same virtue.) Our problem is now to fix

up our "proof" by finding a way to eliminate the division

by y-b. We do this by a simple trick that gives a formula

that will be useful later on.

Since, by definition,

If we define

I'
.

m
f(x) - f(a)

x4-a x - a
= fP(a);

f(x) - f(a)z(x) = f'( a)
x - a

then lima z(x) = 0. z(x) is not defined at x = a, so, in

consideration of the last equation, we define z(a) = 0.
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Mon z.00. 1s continuous at x = a. This result is important

enough to be stated formally.

Lemma. If f is differentiable at a, then there is a

function z, defined and continuous wherever f is, and with

z(a) = 0, such that

f(x) - f(a) = (x - a)[f'(a) + z(x)].

We can now easily prove the Chain Rule.

Theorem I. Let f(x) = h(g(x)), where g is differ-

entiable at a and h is differentiable at g(a). Then f is

differentiable at a and fl(a) = h'(g(a))g'(a).

Proof. Apply the Lemma to the function h, using

b = g(a) instead of a and y = g(x) instead of x. We get

h(y) - h(b) = (y - b)[h'(b) + z(y)],

with z(b) = 0. Then

f(x) - f(a) h(y) - h(b)
x - a x - a

=
y [h'(b) + z(y)]
x -

Now

g(x) - (a)
x - a [0(h) + z(y)].

z(y) = z(lA y) = z(b) = 0,

since z(y) is continuous (see page

498

388). And
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g(x) - g(a)
)(IT x - a g/(a)

by definition o'f g/(a). Hence

f(x) - f(a)
XIW x - a

h'(g(a))g'(a),

which proves the theorem.

If one wishes to think in terms of functions rather

than values at a point, the following formulation is

convenient.

Chain Rule. If f(x) = h(g(x)) then f/(x) = h'(g(x))g'(x)

for all values of x for which the indicated derivatives exist.

Example I. Find the equation of the line tangent to the

circle at the point (3,4).

This problem can be done

by analytic geometry, since

the tangent to a circle has a

a special property. The

slope of the radius to the

point (3,4) is 4/3; hence

the slope of the tangent,

perpendicular to this radius,

is -3/4, and the equation of

the tangent is

y - 4 = 4(x - 3),

Figure I-I

3 , 25
or r
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To avoid using this special property of the circle we

get the slope of the tangent as a derivative. The point

(3,4) lies on the upper semicircle, which, as we saw in

Chapter 3, is the graph of the function

f(x) = /7r777 , x in [-5,5].

Now f(x) can be thought of as h(g(x)), where g(x) = 25 - x2

-1/2
and h(y) = /7 . Then g'(x) = -2x and Fit(y) = 7/

Applying the chain rule gives

f'(x) = h'(g(x))g'(x)

= ;-(25 - x
2)-1/2

(-2x) = -x/v/25 - x2

For x = 3 this gives for the slope of the tangent line

3f'(3) = - T , as before.

I - x
Example 2. To differentiate sin TT we consider this

function as

f(x) = h(y) = sin y, y = g(x) 1 xI T-7-7

It is convenient to use y' to represent g'(x). Then we can

f'(x) = (cos y)y' = (cos y)
(I + x)(-I) - (I - x)(I)

-2 I x
cos

(I + x)2 I + x

500
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Example 3. Differentiate sin2 477-7-T. Note first that

f(x) = y2 y = sin/7777-T , so that f'(x) = 2yy'. Now

y = g(x) = sin z, z = (2 + A , and so y' = (cos z)z'.

Next z = w = x2 + I

-
, so z' -

-1/2
w', and, finally,

w' = 2x. Putting all this together gives

f'(x) = 2y(cos z)( 1/2)(2x)

= 2(sin /77TT)(cos /7777 lI) (2x)
2/x2 + I

x

x

2(sin /77TT)(cos 472-74--I)

sin(2/77-7-1) .

The last two steps of this example are algebraic sim-

plification. It is often important to get the derivative,

which may at first look extremely complicated, into a

reasonably compact form - if, indeed, this can be done at

all. Simplification of the answer is therefore an imoortant

part of any differentiation problem. It may be the hardest

part, since there are almost no rules for guidance and one

must rely on his own experience and ingenuity. With the

chain rule and the theorems of Chapter 5 formal differentia-

tion becomes a straightforward process that can be programmed

for a computer without much difficulty. But so far nobody

has come up with an effective program for simplifying the

results.
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One general rule that is often useful is the following:

if an expression appears as a factor of two or more terms,

to possibly different powers, factor it out of these terms

to the smallest power to which it appears.

Example 4. Find the critical points of y = x3 1777

and test them for local extrema.

We start by treating this as a product of two functions,

giving us

f'(x) = 3x2 /7:77 + x3D
x
VI - x2.

As in Example I, D
x
/77777 = -x(I - x2)-

1/2
So

f'(x) = 3X2(I - x2)1/2 - x4(1 - x2) -1/2

Our rule says to factor out x2 and (I - x2)
-1/2

; this gives

f'(x) = x2(I - x2)-1/2[3(l - x2) - x2]

x2(3 - 4x2)

f'(x) = 0 for x=0 and ±7/2 We certainly do not want

to find the second derivative, so Test 2 seems the best.

x2 and IT=77 are always positive, so fl(x) can change

sign only at -V3/2 and +7/2. Evidently f' is positive

;
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if (x( < 3/2 and negative if lx1 > T/2 , so -V3/2 is a local

minimum point and 3/2 a local maximum point. x=0 is neither,

since f(x) increases on both sides of it. A rough sketch of

the curve is given in

Figure 1-2.

Let us return for a

moment to the statement

of the Lemma. Writing

this equation in terms of

increments (Chapter 6,

Section 5) we have

(I) Af(a) = fl(a)Aa + z(x)Aa.

Compared with the approximation

(2) Af(a) = f'(a)Aa,

we see that the error in the approximation is Just z(x)Aa.

Since z(x) -0- 0 as x -0- a this Justifies our use of (2) as an

approximation independently of the complicated machinery of

Chapter 6. What Chapter 6 does is to give us expressions for

z(x) that can be estimated quantitatively, either

Figure 1-2

by the MVT, or

by the EMVT.

z(x) = f'(E) - f'(a),

z(x) = " (0Aa,

1
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PROBLEMS

I. Differentiate each of the following functions and

simplify if possible

(a) (I - x)10

(b) (2 - x
-3

)

-1

(c) (x3 - 4)5

(d) (x + I)
5/2

(e) [I + (I + x2)5/2]-3/2

(f) (3 - 2x)5(3x2 + 4)3

(k) V71-77-1-

( I) -,1171- 4

(m) cos 3x - 2 sin x
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(n) (z x) cos x2 + 2x2 sin x4

(0) sin (cos2x) cos(sin2x)

(p) sin [sin (sin x)]

(a) (k 3)2(x2 + 2x + i)3(x2 + 4)4

(r) ,17....222(x 4)3
(x - 4)4

+ 7

b/""-7---4,
(5)

(t) (k2 + 2x I)(x3 + 3x - 4)2

(2x + 6)2

(U) (k4 + 5x - 6x-1)3

(v) 14

(w) X sin X

(X) it-77-7

(y) sin t;

(2) co-1.2

2, Find first and second derivative of each of the following

functions.

(0) :ZI-77-1

(b)
cx2, 1)2
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(c) (sin x + cos x)2

(d) tan 3x

(e) x2 sin 2x

(f) tan x + cot x

3. Do Problem II, Section 5-6, by using the chain rule.

4. If f is an even function (See Problems 2 and 3, Section

3-8) prove that fl is an odd function, and vice versa.

5. Prove that if f is differentiable at 0, then 0 is a

critical point of the function g(x) = HO).

6. Find the local extrema and draw the graphs of each of

the following equations.

(a) y = x 11-7-77c

(b) y 3 3x2

3x + 4

7. (a) A ray of light, passing from A to B by reflection

in a mirror at some point C, takes the path that makes
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the total length of path,

AC + CB, as short as possible.

If the relative positions of

A, B and the mirror are as

indicated in the figure show

that x = 10, and that a = 0.

(b) Replacing the specific

numbers 10, 5 and 30 by a, b

and c, show that in all cases

we have a = a. [It is not

necessary to solve for x to

show this.]

8. (Conceived while trying to cross a street).Being late for

clas4 I am in a tremendous hurry to proceed along the

path W, across the street, and

because of a fence I must go

through the gate G. On this
1

side there is no such re-
I STREET

striction. Traffic is heavy, 1

and I
see that the first break

will come when the right rear

corner R of a certain car moves past. I therefore

station myself slightly "up-stream," ready to dash to

G as soon as R passes me. If my velocity is v and the
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car's is V, with V > v, where should I stand?

Ans. *So that sin a = v/V.

9. What is the length L of the

longest straight horizontal

rod that can be moved around

a corner in a passageway of

width w? I. Find,

instead, the width wl,

necessary to contain a rod

of fixed length L moving

around the corner. Then

determine L so that w
1

= w.

Hint 2. You may find it

convenient to use the angle e as

the Independent variable]

10. If you got the rod around

the corner you might try

getting a desk of size L x W

around the same corner.

Formulate a reasonable

question and answer it.
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2. Implicit Functions

There Is an easier way of doing Example I above.

Instead of actually solving for y as a function of x we

merely imagine that y has been solved for, writing

y = f(x) without further specification. We say that we

are treating y as an implicit function of x, in contrast

to the explicit function v75=7 that was used in Example I.

On the upper semicircle, or, more particularly, In

the neighborhood of x=3, we now have

(I) x2 [f(X)32 = 25

identically in x, with f(3) = 4.

To say that (I) is true "identically" means that for

every value of x the left hand side of the equation has

the same value as the right hand side. Or, in other words,

the function g defined by g(x) = x2 + [f(x)]2 is the same

function as the one defined by h(x) = 25, i.e., g=h.

Hence gl=h1; that is, we can differentiate both sides of

(I) and obtain another identity. This is the essence of

the method of differentiating implicit functions.

Differentiating (I), using the chain rule to handle

[f(x)32, gives the identity

2x + 2f(x)f'(x) = 0.
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Now putting x=3 gives, since f(3) = 4, our familiar result

f'(3) = -3/4.

We usually abbreviate this, as in Example 2 above, by

using y' instead of f'(x). Thus from x2 + y2 = 25 we get

at once 2x + 2yy' = 0, and so in general y' = - x/y. Note

that this form applies as well to the lower semicircle as

to the upper; for example, the slope at (2,-TT) is

-2/(-.17r) = 2//7r .

Example I. The graph of x3 + y3 = 3xy is shown in

Figure 2 -I. The point P:(1,.348) was found by solving

I + y3 = 3y by an approximation method like that of

Chapter 3, Section 2. We wish to find the slope of the

curve at P.

The figure strongly

suggests that there is a

differentiable function

f(x) such that

f(1) = .348 and such

that x3 + [f(x)]3 = 3xf(x)

for all x in, say

[.7,1.3]; namely, the

heavy part of the curve.

If we let y designate

510 5
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this function and y' its derivative then by differentiating

x3 + y3 = 3xy we get

(2) 3x2 + 3y2y' = 3(xy' + y).

The expression in parentheses comes from the derivative of

the product

D
x
(xy) = x(D

x
y) + (D

x
x)y = xy' + ly,

or more precisely, avoiding abbreviations, from

D
x
(xfx)) = xf'(x) + f(x).

Solving (2) for y' then gives us

(3) y 1 =
y

= .742 at (l,.348).
y 2 - x

Having turned the crank to get the answer we must now

be critical and ask whether the process is actually

Justified. is there really such a function as f(x), or

are we being misled by a picture? How do we know that as

x changes from the value I the equation y3 - 3xy + x3 = 0

has a root in y that changes continuously and differentiabiy

with x? The answer is that there is such a function,

although it cannot be expressed in an explicit form (involv-

ing real numbers only). The proof of the existence of such

a function is a special case of an Implicit Function

Theorem of great generality, a topic for Advanced Calculus.

In this book we shall adopt the point of view that each use

of implicit functions is tacitly preceded by a remark of
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the sort; "From graphical cr other evidence it looks as if

there is an implicit function of the required kind. I

shall proceed on the assumption that the function exists,

knowing that my results are dependent on the truth of this

assumption."

Example 2. Find the local maxima of the curve of Example I.

It is fairly obvious how we want to define a local

maximum of a curve given by an equation in x and y; namely,

a local maximum of any implicit function of x defined by the

curve. If f(x) is any such function then, by (3), f'(x) = 0

only if y = x2. Since x and y must also satisfy x3 + y3 = 3xy,

we get the possibilities by solving these two equations

simultaneously. Eliminating y gives x3(x3 -2) = 0,or x=0,

h, and correspondingly y=0, .

(7, 07) looks like a reasonable extremum- we shall

test for a maximum later - but (0,0) certainly does not.

For one thing, although the numerator of f'(x) is zero

at this point so is the denominator, so fl(0) is not

defined by (3). You might maintain that there is a smooth

piece of the curve that goes through the origin tangent

to the x-axis and that this defines an implicit function

having x=0 as a local minimum point. This, in fact, is

the point of view of the branch of mathematics known as

Algebraic Geometry. On the other hand the Implicit Function

Theorem mentioned above does not apply to a point like
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(0,0) on this curve. We will follow this track and exclude

such points from consideration.

What test do we apply to 07, n) to see if it is a

maximum? Because of the difficulty of computing values

of y, Test I is not attractive. Test 2 can be used by

showing that a small increase in x will make yl<0 and a

small decrease will make yl>0. (We leave it to the student

to fill in the details.) Can we use Test 3? To get to

the heart of the matter, can we find second - and higher -

derivatives of implicit functions? The answer is yes, of

course; we simply differentiate equation (2) or (3). The

latter is usually the most convenient, since y' is not

mixed up with x and y. Remembering always that y is simply

a substitute for f(x), we get from (3),

(y2 - x)(y' - 2x) - (y - x2)(2yy' - I)

(y2 - x)2

(2X2 y2 x)_yl + (x2 2xy2 + y).

(y2 - x)2

We can get rid of the y' by replacing it by its value from

(3). Doing this, the result simplifies to

ytt 2xy (3xy - x3 - y3 - I)

a (y2 - x)3
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Now remember that x and y(=f(x)) always satisfy the identity

x3 + y3 = 3xy. Hence

-2xy
(y2 x)3

Test 3 is now trivial; since x, y, and y2 - x, which equals

- , are all positive, y" is negative and we have a

maximum.

Another application of the differentiation of implicit

functions is to extremum problems of the type of Example 7 of

Section 6-1. Here we have a quantity to be maximized that

depends on two variables, r and h, namely A = 2ffrh. We

2also have an equation h2 = R2 relating these two

variables. The technique was to solve the equation for one

of the variables as a function of the other and substitute in

the expression for A, thus expressing A as a function of

one variable:

= iR2 - r2h(r) , A(r) = 2ffrh(r) = 2ffrR2 - h2 .

Suppose now that we do not actually solve for the function

h(r) explicitly but regard it as defined implicitly by the

equation r2 + h2 = R2. Then, differentiating with respect

to r, we get

(4) 2r + 2hh' = 0.
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Similarly, regarding the h in A = 2irrh as this same

function, we get

A' (r) = 2irh + 2irrh' .

For a critical value of r we must have A(r) = 0, or

(5) 271-1 + 2irrh' = O.

Between (4) and (5) we can eliminate h', getting r2 = h2,

or, since neither r nor h can be negative, r = h. This

result in itself is interesting, telling us that for the

maximum area the altitude of the cylinder should equal its

diameter. If we want the actual values of r and h in

terms of R we have only to solve r = h and r2

simultaneously.

h2 = R2

Note the advantages and disadvantages of this implicit

method. It may be extremely difficult, or perhaps even im-

possible, to solve the side conditior: for one variable in

terms of the other; in this case the implicit method is

helpful. On the other hand, this method leads eventually to

the solution of two simultaneous equations, and this can be

a difficult job. In any problem one must use his judgement

as to which method to follow.
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PROBLEMS

I. Assuming that y = f(x) and that y' = f'(x) exists,

find y' in each of the following.

(a) xy = I

(b) x3 + 6xy + 5y3 = 3

(c) y =
67 + I

-

(d) y2 + 2x = - y

(e) x + /77 = 2y

(f) 2x2 - y2 = I

(g) x3 + x2y2 = x + 2y - I

. (h) x1/2 4. y1/2 =

(i) x sin y = y sin x

2. Find y" in parts (a), (d), (h), and (i) of Problem I.

Simplify your answers if possible.

3. (a) Find the local extrema of the curve

y2 4. 4. x2 = X.

(b) Now think of this equation as defining x as one or

more functions of y and find the local extrema of these

functions. What do these mean geometrically?

516
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(c) Use the results of (a) and (b) to graph the curve.

4. (a) Find the equation of the line tangent to the parabola

y2 = ax at the point P = (c, inn)

(b) Find the point Q where this line intersects the

x-axis.

(c) If F is the point (a/4, 0), the focus of the para-

bola, show that PFQ is an isosceles triangle.

(d) Show that rays of light emitted by a source at F

will be reflected by the parabola parallel to

the x-axis, and, reversely, rays entering the parabola

parallel to the axis are reflected to a focus at

F. These properties are the reason for the use of

parabolic mirrors for searchlights and for

astronomical telescopes.

5. An artist has a 1000 lb. lump of clay. He wishes to

make from it a cube and a sphere and paint their surfaces.

In order to maximize the total surface to be painted (the

cube will, of course, be supported on one corner) how

should he divide his clay?

Ans. In the ratio 6 to it, or 656 and 344 lbs.

St;
517



www.manaraa.com

6. We wish to find the point (x, y) of the ellipse

x2 + 4y2 = 4 nearest to the

point (2,1). Show that x

must satisfy the equation

- 48x3 + 32x2 + I92x - 256 =

This equation has two real roots,

about 1.637 and -1.982. Without

using the picture determine which

one gives the desired point.

.
Use Test 2 to show that x = h" is a local maximum point

in Exercise 2. [Hint: Show that for a sufficiently

small change in x from x = thethe change In x2 is

larger, than the change in y. Use the result of the last

part of Section 6 -4.]

. n 518 G7
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3, Inver Punctions.

The derivative of the cube-root function, f(x) = ,

bOtained, as wacan be s done in Chapter 5 for 7 by

evaluating

p f7
y4X x - y

by means of algebraic trick. The same method can be

used for any root of x, but a much easier way to proceed

is to use implicit differentiation. If y = n' then

Y3 = x, and

3y2y1 = I,

=

3y2

_ -2

more p/qgenerallY, let y = x , where p and q are

positive integers. Then yq = xP, and

qyq-1 y = px p-1

2,13-1y-0-1

ExP-Ix(ps/q)(-q+1)

. . 519 s;
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Thus the formula.

(1)

2.x1D-1.P-"Pici)

Eoc(p/q)-1

q

D
x
(x

n
) = nx

n-I

which we derived in Chapter 5 for the case where n is a

positive integer, holds also if n is any positive rational

number.

Finally, let n be a negative rational number, and let

m=-n. Then

D (xn) = D (-1-4
x x m

x

m
(D I) - 1CD X xMY

x
2m

0 - mxm-1

x
m

-
= -mx

m-1

= nxn-I

Hence (I) holds for all rational values of n.

Returning now to our cube-root function, f(x) = ?1,W

we see that what we did was to consider another function

g(Y) = Y 3

since each

f and g are said to be inverses of each other

undoes"' what the other does.
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Let us visualize a function x y as a machine which

operates on an input x to give an output y. Two functions

are then said to be inverses of each other if whenever we

put a number in the input hopper of one machine and then

feed the output into the second machine, the final result

is just what we started with. This is illustrated below

with the cubing function and the cube-rooting function.

125

ft 64

Figure 3 -I

If we hooked these two machines together in either

order to form a composite machine, then the net effect

would be to have a machine for which the output is the

same as the input - not a particularly useful piece of

machinery,

52-3
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cuber

cube
rooter

Figure 3-2

It is very helpful in

studying inverse functions to

look at their graphs - because

the same graph will do for

both functions. Thus in

Figure 3-3 we see the graph of

Y = or x = .

This will serve as the graph of

f(x) = x3 and also as the graph

of g(y) = n* provided that we

lie on our ear and regard the

.1

125
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x-axis as the output axis. Thus we see that

f(5/4) = (5/4)3 = 125/64,

g(125/64) = 12I74 = 5/4;

so that

g(f(5/4)) = g(125/64) = 5/4,

and

f(g(I25/64)) = f(5/4) = 125/64.

And in general we will have

g(f(x)) = x and f(g(y)) = y.

These relations characterize inverse functions.

Suppose that we consider the inverse of the function

f(x) = x2.

If g is to be the inverse function then, since g(f(I)) = I

and f(I) = I, we must apparently have g(I) = I. But we also

have f(-I) = I, and since necessarily g(f(-I ))= -I, we get

also g(I) = -I. This contradiction leads to the inescapable

conclusion that this function f has no inverse.

You know the way out of this impasse, and have used

it for years. We restrict the domain of f to non-negative

523



www.manaraa.com

values only, to give us the

function in Figure 3-5. Here

there is no trouble, for

g(I) = I without question.

g(x) is denoted by 67, and

the above process is usually

expressed in high school by

some less sophisticated

statement like "An indicated

square root is always assumed

to have the plus sign."

We can see from this

example that in order for a

function, f, to possess an

inverse it is necessary that

Figure 3-4

f be one-to-one. That is,

not only does each input Figure 3-5

value determine a unique

output, but also different

inputs must yield different outputs. In the case that the

function f is continuous (the only case we will be interested

in) this means that f must be strictly monotone (i.e. either

strictly increasing or strictly decreasing.) We leave it

as an exercise for you to verify the truth of this assertion.
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A more difficult case than the square-root function

is the sine function. If g is to be the inverse function

then what, for example, is g(I/2)? Is it -4 , , 5.16L , or

what? Here again we must make a drastic reduction in the

domain of the function

before we can talk about
I-

an inverse. Now the
2111-- Tr-

values of sin x run
711/6 511/6

from -I to I inclusive;

i.e. the range of f

is [ -1,1]. This, then,

should be the domain of g, since in g(y) we should allow y

to assume any value taken by f(x). In accordance with the

previous paragraph we therefore want a monotone piece of

the y = sin x curve running from y = -I to y = I. There

are obviously plenty of these available; over the invervals

Figure 3-6

[ -74,;], [.74, j3w-% or in general E(n+4)w,(n4)w], where

n is any integer. If we have to standardize by choosing one

of these the most reasonable one seems to be [-M].

Making this choice, we define

g(x) = arcsin x, -1 < x < I

as that inverse of the sine

function that satisfies

-7 arcsin x 1.

The graph of

y = arcsin x,

is shown in Figure 3-.7

52553,E

11.1=1, .11=1110 4=0

ON

4

y arcsinx

Figure 3-7
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Anothe.- common notation for the function inverse to the

sine function is sin
-I

x. The exponent -I is used here to

designate the "inverse of the function sin" in the same way

as 2 designates the "inverse of the number 2." This is a

reasonable notation, but unfortunately it can get confused

with the common notation sin
2x, which means (sin x) 2

. One

tends to think that sin-ix means (sin x)
-I which is most

definitely not the case. In this book we shall stick to

the "arcsin" notation.

In a similar way we can define the inverses of the

other trigonometric functions, but arccos and arctan are the

only others that are ordinarily used. Arctan is easily

handled and we leave it as an exercise to show by a graph

that for

< arctan x

and all values of x we have an inverse of the tangent

function over the domain ( -.. , 7).

The sine and cosine curves are

very similar and hence the inverse

functions are much alike. The

choice of a monotone piece of the

cosine curve is perhaps not quite

as obvious as for the sine but still

the one between 0 and it seems the l ogical

choice. This gives the restriction

526 53
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0 < arccos x <

with -I < x < I as before. The graph is shown in Figure 3-8.

Now we come to the differentiation. From

we get

, and so

y = arcsin x

sin y = x

(cos y)y' =

y
=

cos y

Now since y satisfies < y < it is an angle in the first

or fourth quadrants and so cos y is positive. Hence

cos y = VI - sin2y = /7777 ,

and we get finally

D
x
arcsin x =

1

In a similar manner we derive

D
x
arccos x = -

D
x
arctan x =

- x2

+ x2

Consider, in general, two functions f and g that are

Inverses of each other. If f(a) = b we must have g(b) = a.

527 53



www.manaraa.com

Or, in other words, if the

curve y = f(x) goes through

the point (a,b), then y = g(x)

goes through (boa). (Figure

3-9). These two points are

symmetric with respect to the

line y=x, and hence the two

curves y = f(x) and y = g(x)

are likewise symmetric since

their points can be paired

off in this symmetric

fashion. Also, the tangent

lines to the two curves at

corresponding points, being

the limits of secant lines through corresponding points,

are symmetric. We leave to the reader the proof that two

lines, symmetric to y=x, have reciprocal slopes unless

Figure 3-9

one is vertical and the other horizontal. Thus g/(b) = Tr FT

An analytic proof of this result follows at once from

the chain rule. For we have

g(f(x)) = x

for all x in a suitable domain and so

g'(f(x))f'(x) = I .

For x=a, f(x) = b; hence

g/(b)fl(a) = I

7! 528
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or

g/(b) = Tricyr

as before.

Bear in mind that the results of this section, since

they are based on the differentiation of implicit functions,

are subject to our general assumption that the desired

functions exist and are continous and differentiable. For

the special case of inverse functions it is not difficult

to prove this, and a proof, together with a more careful

general discussion of implicit functions, is given in

Appendix A of this Chapter.

529 5,3
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PROBLEMS

I. Derive the formulas for the derivative of arccos x

and arctan x.

2. Prove that two Ilnes symmetric with respect to the line

y = x have reciprocal slopes If neither of them is

horizontal.

3. Differentiate the following and simplify the result

when possible.

(a) arcsin 2x

(b) arccos 5x

(c) arctan
x

(d) arcsin 7

(e) arcsin - t4

(f) (I arcsin 3x)2

(g) x arcsin x + - x2

(h) arctan x2 - I

(1) arcsin x - xi - x2

(J) arcsin 3x
1 + 2x

(k) arctan

(I) x arccos x

(m) arccos

(n) y2 arccos 2y

(o) arctan (,3 tan x)

3 sin x
(p) arctan C

4 +5 cos x
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4. Are sin(arcsin x) and arcsin(sin x) always equal to x?

5. Let f(x) = arcsin x + arccos x and find f'(x). What

can you conclude about f(x)? Be as specific as

possible.

6. A cathedral window 8 ft

high has its bottom 24 ft

from the floor. A tall

tourist whose eyes are

6 ft from the floor wants

to view the window so that

it subtends the largest angle to his eye. How

far from the wall ohJuld he stand?

7. (a) Fihd the first five derivatives of arctan x.

(See Froblem 2(b). Section 1)._

(b) These derivatives suggest that the n-th derivative

of arctan x is of the form

P (x)(x2 + I )nA

If this is true for the n-th derivative show that

it will be true of the (n + l)th derivative provided

P
n+1

(x) = + i)P
n
(x) - 2nx P (x).

(r) Use this recursion ft)rmula to find two more

derivatives of arctan x.

,
531

54 0



www.manaraa.com

(d) Use your results to write out Taylor's Theorem for

arctan x, with a = 0 and n = 6.
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4. Related Rates.

In Chapter 5 we spoke of the velocity of a moving

point as "rate of change of distance" and later on of

acceleration as "rate of change of velocity." In general,

when any quantity is a function of time we may refer to

the derivative of this function as the "rate of change"

of the quantity. Some writers even extend the use of the

phrase to include any derivative, using such expressions

as "the rate of change of the area of a circle with respect

to its radius." We shall not do this.

If two related quantities are changing with time, we

can often determine the rate of change of one if we know

that of the other. The analytic machinery for doing this

is somewhat like that used in the preceding section, but

here we do not have to worry about the existence of our

functions since this is presumably assured by the physical

situation.

Example I. A point is moving on the curve x2 + y2 = 25

in such a way that when it is

at (3,4) its projection on

the x-axis is moving

towards the origin at the

rate of 12 units/sec. How

fast and in what direction

is its projection on the

y-axis moving? (Figure 4 -I).

533
Figure 4 -I



www.manaraa.com

Here we have x = f(t), y = g(t), such that

f(t)2 + g(t)2 = 25, and for some t0 we have f(t0) = 3,

g(t0) = 4, fl(to) = -12. We want to get g'(t0).

Differentiating the identity in t gives

2f(t)fl(t) + 2g(t)gl(t) = 0,

and putting t =t0 and substituting the known values gives

g'(t0) = 9. That is, the projection on the y-axis is

moving upward with velocity 9 units/sec.

As in Section 2, we usually simplify the notation,

writing merely x, y, x', y' instead of f(t), g(t), f'(t),

gv(t).

Example 2. In Figure 4-2 BAC is

a link belt of length. 12 in. that

will bend around a pulley at A

but will not compress where it

lies on a table along AC. A cord

BCW, tied to the belt at B and

sliding over the end at C, supports

a weight W. At the moment when B

is 4" above the table and is being

pulled up at the rate of 2 in./sec,

does W go up or down and how fast?

534
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Letting x, y, z, stand for the values of AB, AC, CW,

we have the equations

x + y = 12, r(r'y 2 k z = L,

if L is the length of the string. Here we have three

variables. We could eliminate y, in which we are not

interested, but it is easier just to differentiate both

equations and then eliminate y'. Thus:

y' = 0, -2-(x
2 + y 2

) -1/2(2xxl + 2yy') + z' = 0.

Now putting in the values x=4, x' =2 gives at once y=8,

y/=-2, and then z' =
2

= .894. Hence W is falling at

about 0.9 in./sec.

Radicals are always annoying to differentiate, so

we may preter to get rid of the square root by transposing

z in the second equation and squaring. This gives

x2 + y2 = (L-z)2, which differentiates to

2xx' + 2yy' = - 2(L -z)z' = -2/x2 + y2 z

and the solution nroceeds as before.
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PROBLEMS

I. A balloon is being inflated at the rate of 8 in.3 /sec.

Find the rate of change of the radius of the balloon

when the radius of the balloon Is r ft.

2. Sand is being poured onto a conical pile at the rate of

9 ft3/mln, Due to the friction forces, It is known

that the slope of the sides of the conical pile Is

2always 7. How fast is the altitude increasing when the

radius of the base of the pile Is 6 ft?

3. A ladder 25 ft. long is leaning against a wall, with the

bottom of the ladder 7 ft. from the base of the wall.

If the lower end is pulled away from the wall at the

rate of I
ft./sec, find the rate of descent of the

upper end along the wall. Approximate this descent at

the end of 8 sec.

4. A rope 35 ft. long runs over

the top of a wall 12 ft high.

Each end is attached to a

heavy block which slides on

the ground. One block is

16 ft. away from the foot of

the wall and is being pulled farther away at the rate

of 30 ft./min. 1-16W fast is the other block approaching

536 5.
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the wall, assuming the rope Is taut?

5. A man starts walking eastward at 5ft/sec from a

point A, Ten minutes later a man starts walking

west at the same rate from a point 8, 3000 ft north

of A. How fast are they separating 10 min. after the

second man starts?

6. One way to lean a long light ladder against a

house is to "walk-it-up". Propping the foot of the

ladder against the house, you start at the far end,

holding the rungs above your head, and walk towards

the house, shifting your hands from rung to rung as

you do so. When the ladder is against the eaves you

steady it with one hand .tr.' with the other lift it

slightly and move the other end a suitable distance

away from the house.

A man raising a ladder

30 ft. long is holding the

rungs 6 ft. above the ground

and is walking towards the

house at the rate of 2 ft/sec.

At the moment that he is 8 ft.

from the house, how fast is the

high end of the ladder rising?
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7. A rope ABC passes over a

pulley at B, thereby enabling

a man at end A to slide a

weight at end C along a hori-

zontal elevated platform.

If A moves to the right with

velocity v, express the speed of C and the rate of change

of the distance AC in terms of v and the angles ABC and AI

MN3 11011011

Ans. (BC) 1 = -v cos 4 ABC

(AC)' = -v cos. AC8 (I + cos.d ABC).

8. (a) A weight is hung on a rope

and pulleys as shown. If

the free end of the rope is

pulled down at 3 ft/sec,

how fast is the weight

rising when the lower pulley

is 12 ft. below the level of

the upper one?

(b) What answer do you get if you replace the 12 ft.

in (a) by -rz- inch? Does this sound reasonable?

What is wrong?

3 ft/
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5. Some Notation.

Since elementary school you have been familiar with

the use of letters to represent physical quantities. For

example, if a body is falling we may use t to represent

the time since it was dropped, s its height above ground,

and v its downward velocity, all expressed in appropriate

units. In a specific case these three quantities are not

independent; in fact, any one of them determines the other

two. There are therefore six functional relations of the

type

(I) s = f(t), v = g(s), v = h(t), etc.,

these are illustrated in Figure 5-I. The functions are

not independent either, but satisfy such relations as

h(t) = g(f(t)), etc.

To avoid too much notation it is customary to use

one symbol for each quantity, regardless of whether we

are considering that quantity to be an independent

variable, a function of some other quantity, or a particular

value of one of these. Thus instead of giving names to the

functions as in (I) and writing the chain rule as

h/(t) = gi(s)f/(t)

we can merely write directly

Dtv = Dsv Dts

the subscripts telling us which function we are using in

each differentiatioV.
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If one wishes at some

stage to emphasize that at

that moment v is being con-

sidered as a function of s

one can write v(s). Using

this notation the chain

rule could be written in

still another form:

v'(t) = vl(s) s'(t).

-Remember that notation

is introduced for

convenience, and it's up to

you to pick the type that

you regard as most

convenient. Remember also

that compact notation often

conceals the true state of

affairs; if you are in any

doubt about its meaning, go

back to the exact notation

in terms of separately

defined and designated

functions.

0 t 5.e. 10

.54:9

Figure 5 -I
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6. Differentials.

Much of the common notation in calculus is related to

the notion of a "differential," and we start the study of

this concept by introducing some of this notation.

If f is differentiable at x the Lemma of Section I

can be written, in terms of "increment" notation, as

Af(x) = f'(x)Ax + z(x Ax)Ax,

where z(x) = 0. This is essentially the same form as

Equation (I) at the end of Section I. In Figure 6-I

(which pictures two cases,

one for positive Ax and one

for negative) Af(x) is the

signed distance AQ. The

signed distance AT is the

linear approximation to

Af(x) given by the first

term on the right-hand side,

f'(x)Ax. This approxima-

tion is linear in Ax and

is, moreover,defined for all

values of Ax, whereas the

exact express1on is

defined only when x + Ax lies within the range of definition

of f(x). The concept of a differential is suggested by these

properties of the linear approximation.

Figure 6-1

7 I.
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Definition, If f is differentiable at x, the differential

of f at x is the function df defined by

h f'(x)h, h in (-0),03) .

If f and g are functions of the same variable x, and

if g'(x) / 0, then the quotient of the two differentials,

df
i, is the mapping

f'(x)h fl(x)
51777 51-77T

dfThat is, 71-6 is a constant function, its value not depending

on h. We find it is convenient, and leads to no confusion,

if we merely write

df f' (x)
cTg -Frm<

Now consider the special case g(x) = x, that is, g(x)

is the identity function that maps x 4- x. Then dg is also

the identity function mapping h h. By rights we should

have a special symbol, say I, for this function and write

dI as its differential. However, it turns out to be much

more useful to use dx as the differential of the identity

function of the variable x. Then (I) becomes the important

relation

(2)
df = fl(x)
.a)-7

which can also be written as

(3) df = fl(x)dx .

542
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We are now ready to tackle the more complicated case

of three related variables and to introduce the notation

of Section 5. Consider the velocity v, which may be

considered a function of either s or t. As long as functional

notation is used, as in (2) or (3), we have no trouble, for

if we write, say, dv = v'(s)ds we know what function of v

we are using and no confusion arises. But sur;pose the

symbol dv appears in an equation with no indication of what

v is a function of - what are we to assume? The interesting

thing about differentials, the property that makes them so

handy to manipulate, is that it doesn't matter. Whether v

is considered a function of s or a function of t, or of any

other related variable, dv is the same.

Proof. Let v = v(s) and s = s(t). Then v is a function of

t, which we call vi(t), and vi(t) = v(s(t)). Then

dvi = vi(t)dt = v'(s)s'(t)dt = v'(s)ds = dv

by the chain rule and repeated use of (3).

Equation (2) gives us another notation for the derivative:

If y = f(x) then

df
f'(x) = y' = Dxf(x) = Dxy = ,

to which we add

. Lit df(x) d

dx U7-- Z74(x)

The last one is purely for convenience in indicating the

derivative of a complicated function. The symbol is

the one in most C8imon use, since its relation to

:5:5 2
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differentials gives it a flexibility that the others lack.

As one example consider the expression for the chain rule:

it is merely

Ai d:
dx dz Tx '

a triviality. (Of course this is not a proof of the chain

rule, since the chain rule was used in proving the property

of differentials that enables this equation to hold.) On

the other hand, the
dx

notation is awkward if one wants to

specify a pa-eticular value for x. Thus y'(2) must be

written in some such form as lax)
x=2

One can, of course,

switch from one notation to another, as convenient, but

this is apt to confuse the reader and should be done only

in moderation.

The basic formulas and the technique of differentiation

can be reconsidered from the point of view of differentials.

For example, Theorem 4 of Section 5-6,

Dx[f(x)g(x)] = f'(x)g(x) + f(x)g'(x),

can first be rewritten as

d(fg) df do
M-12( f- r-dx

and then, on multiplying by dx,

d(fg) = gd, + fdg .

The other theorems in this group can be reformulated similarly
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As an illusti-otion of th,.) application of these formulas

consider Example I of Sectlyn 2. Instead of differentiating

+ y3 = 3x' with respect to x we can for the moment ignore

the question of which is the independent variable and take

differentials. This gives

3x2dx + 3y2dy = 3(xdy + ydx) .

Now dividing by dx and solving for (c4 gives the same equation,

SLY. = Y x2
dx y2 - _x

as before.

It is natural now to ask "What about second derivatives?"

Here, alas, the differential notation fails us. It is

possible to define something called the "second differential"

but it lacks the one property that makes the "first

differential" so useful, namely its constancy under change

of independent variable. Second and higher differentials

were commonly used in mathematics about eighty years ago

but today they are almost obsolete.

However, we do need some notation for higher derivatives

to go along with dx
Of course

d
cc1+1, 47(4)

545
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and

,11,=, AL' d id idyll
dx 77777MJ

but this compounding process will hardly do for, say, y (7)

and not at all for y (n)
. The way out has been to invent a

symbol that is compact but suggests its origin. For y"'we
3

write , suggesting the three d's upstairs and the three
dx3

dies downstairs in the expression for y"' It is important

3dyto remember that --- is a single symbol - it is not a
dx3

quotient of something called day by the cube of the differ-

ential dx.

If you need to handle a lot of higher derivatives (as,

for example, in Taylor's Theorem) it is probably best to

abandon the d-notation and use primes, or perhaps Dx. The

latter works quite well since we can, for example, abbreviate

yl" = D
X
(D

X
(D

X
y)) to D

x
3y and y(n) to D

x
ny
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PROBLEMS

1. In each of the following find dy in terms of dx

and any of the variables that appear.

(a) y = if - x2,

(b) y = (x2 + 1)/(x + I),

(c) x2 + xy + y2 = I,

(d) x cos y = y sin x,

(e) z = cos x, y = sin z,

(f) x = t sin t, y = t cos t,

(g) x2 + u2 = 4, y3 + u3 = 8,

(h) z2 + xz - 2x = 0, x3 + y3 + z3 = 24.

ds
'2. Given that s is a function of t, and v = show that:

dt

(a) des

dt2
= v

dv

ds

(b) d3s v(dv)2 + v 2 d2V

dt3 ds ds2

3. u, v, and w are three functions of the same variable,

having the property that their product Is constant.

(6) Find a relation between the differentials of

u, v, and w. [Hint. First consider uvw as (uv)w.]

(b) If u is taken as the independent variable what is

D
u
v in terms of D

u
w?

541
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Parametric Equations.

Having found the tangent to x2 + y2 = 25 at the point

(3,4) in three different ways we shall now do it in a

fourth way. Associated with any point (x,y) on the circle

is an angle 0 formed by the x-axis and the radius to

(x,y), and we have

(I) x = 5cos 0,

y = 5sin 0.

The extra variable e that

we have introduced is called

a parameter, and equations

like (I), expressing x and

y as functions of the

parameter, are called

parametric equations. Figure 7 -I

We now have a situation somewhat like the one discussed

in Section 5. From (I) we get

and so

dx = -5sin 6 de,

dy = 5cos 6 de ,

5cos 0 x
=

3

x' dx 7777-17 -7 T P

, 548
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as before, The division by dx is legitimate, since at

(3,4) we have dx = -4d0 # O.

Many curves are more easily handled in parametric

form than otherwise. Here is a classic case.

Figure 7-2

Example I. A wheel of radius a is rolling without slipping

along a straight road. The path of a point on the rim of

the wheel is called a cycloid. To get equations for the

cycloid we let the wheel roll along the x-axis, with the

origin where the point P on the rim touched the axis, and

take as parameter the angle through which the _wheel has

rolled from this point (Figure 7-2). Since there is no

slipping,

OA = arc AP = a0 ,

if a is the radius of the wheel. Then

x = OB = OA - PM = a0 - a sin 0 ,

y = BP = AC - CM = a - a cos 0

55 8
549
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The slope of the tangent line at P is

a sin 6 de

dx (a - a cos 6)d6

sin 0
- cos 6

2

If we want we simply use
dx2

d( x
)

dx2 dx

CH - cos 6)cos 6 - sin 6 sin 6
d

-1

t3J [a( I - cos e)de]

(I - cos e)2

cos 6 - I

a(1 - cos 6)
3

-I a

a(I - cos 6)2 Y
2
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PROBLEMS

I. Prove: A line through a point of a cycloid, perpendi-

cular to the tangent at that point, passes through the

lowest point of the wheel.

2. Find D
x
y and D

x
2y in each of the following.

(a) x = t2,

(b) x = sec 6,

(c) x = sin3 t,

(d) x =
t2
t2 +

What curve is this?

y = t + I.

y = tan 6.

y = cos3 t.

2
Y =

2t

t2 +

(e) x = 2 sin t - cos 2t, y = 2 sin t - sin 2t.

3. If x = f(t), y = g(t);

(a) Show that AL V")
dx v(t)

(b) Show that 1/ = f'(t)g "(t) - g'(t)f "(t)

dx2 [f'(t)J3

4. Using the result of 3(b) find 2-Z-
dx2

60
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(i) for the circle,

(ii) for the cycloid.

Compare the former with the result obtained from

implicit differentiation.

5. (a) A string, wrapped around

a cylinder of radius a, is

held at a point P and unwound,

being kept taut in the process.

Find parametric equations for

the path of P, find Dxy and

D
x
2y, and determine any

interesting geometric proper-

ties you can. This curve is

called the involute, of the

circle. [Suggestion: Use the angle e for the parameter.]

(b) Describe the involute of a square.

6. (a) The equation x3 + y3 = 3xy of Example I, Section 2,

can be parametrized by setting y = tx. Show that this

leads to

3t
x

+

552

=
3t2
+ 3

561
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(b) Find D
x
y as a function of t.

(c) By setting this expression for Dxy equal to zero

and solving, we get t = and t = 0. The former

agrees with the result of Example 2, Section 2, but the

root t = 0 seems to give us something new. Explain

why we get this solution from the parametric equations

but not from the implicit function approach.

7. In the parametric equations of the cycloid, solve for

0 in terms of y and substitute to get x as a function

of y. Find Dxy from this equation and show that it

agrees with the result of Example 1. Which method do

you prefer for finding Dxy?

553
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APPENDIX A

Theory of Inverse Functions

Let f be a strictly monotone and continuous function

defined over the interval Ea,b] and g its inverse function.

According to the intermediate value theorem for continuous

functions f(x) assumes all values between f(a) anti f(b), so

that the domain of the inverse function g, is the interval

between f(a) and f(b). Thus for any pair of inverse functions

the domoin of one is the range of the other.

It is also easily checked that g is strictly monotone

in the same sense as f(i.e, increasing if f is increasing,

decreasing if f is decreasing).

Furthermore we can

show that g is also

continuous. In order

to show this we must be

able, for every number

c between f(a) and f(b)

and every number c > 0,

to find a number 6 so

that for all y within a

distance 6 of c we have

g(y) within c of g(c).

54

f (b

C

f(a)
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Figure A-I
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The monotonicity of f and g makes it very simple to find

what is actual/,i The best possible value of 6. The

method amounts to a four step algorithm.

I. Select a nt r c, between f(a) and f(b) and choose

e > 0. Loca._ g(c) on the x-axis.

II. Locate g(c) - e

and g(c) + e

on the x-axis.

Call these

numbers a and 0

for short.

Ill. Locate f(a) and

f(8) on the

y-axis. Call

them r and s

for short.

Note that,

owing to the

monotonicity of

the function g,

all numbers

between r and s

will be mapped

by a into the

55
,t
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interval [a,0]

and hence lie

within c of g(c).

Iv. Letting 6 be

the smaller of

the distances

from c to r and

from c to s we

f (b)

r

f(a)

y

now see, 'n figure A-4 that if

a

Figure A-4

g(c) /3

y is within a distance

6 of c then g(y) is within a distance c of g(c). This

is what was to be proved.

(Darkened interval on x-axis is image under g of

interval [c-6, c+6].)

[More briefly but probab!y less clearly we could have

said: "Let 6 = minflf(g(c)-c) - cl, If(g(c)+c) - ci}"

Finally we can establish the required differentiation theorem,

Theorem. If f is strictly monotone and fl(x0) exists and

is not zero, if g is the inverse of f, and if y0 = f(x0),

then gl(y
0

) exists and is equal to Tr .
0

Sc
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Proof. Since f and g are inverse functions

g(y) - g(Y0) g(y) - g(y0)

Y - y0 f(g(y)) - f(g(y0))

= - g(y) - g(y0) 111111
[g(y) - g(y0)] [f'(g(y0)) + z(g(y))]

by the Lemma of Section I. Now for y # yo we have g(y) g(y0),

since g is strictly monotonic. Hence as y -' y0 the quantities

g(y) - g(y0) are never zero and so can be removed as factors

from the numerator and denominator. That is,

g(y) - g(y0)
lim
"10 YO

I 71-577-1T7rFr5777
Y-qo 0

f'(g(y
0

I

Trr7--)-(0

since, as we saw in an earli,cr proof,

lim z(g(y)) = zClim g(y)) = z(g:yo!,) = O.
"10 "0

56 G
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Chapter F

THE CONNECTION BETWEEN U:FFERENTIATION

AND INTEGRATION

I. Anti-derivatives.

A rich source of mathematical problems from elementary

physics is related to "falling body" problems. Consider an

object or "body" dropped from a height and allowed to fall to

the ground and let v(t) represent its velocity at time t.

As you are aware this velocity tends to increase during the

time of which is why it hurts more to jump off a ten

story building than off a 5-foot i.

The acceleration of a moving object is defined as +he

time rate of change of velocity, that is

a(t) = v'(t) .

In a very highly simplified model of Newton's theory of

gravitation, the acceleration due to gravity is (for objects

falling near the surface of the earth) the same for all objects

and is independent of the time of fall; that is to say, it is

559 5 6 7
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constant. When distances Lc.re measured in feet and times in

seconds the value of this constant is about 32; at least, this

is the value we will use in our modeling of this situation.

We find then that v'(t) = 32 . Now the question arises,

"Can we, from this information, find the velocity function

itself?"

This is Just one instance of the more general problem:

Given a formula for finding the values of f'(x), say, like

f'(x) = 3x
2

+ 5 ,

can one find a formula for the values of f(x)?

At'first the situation seems somewhat discouraging, for

both the functions

g(x) = x3 + 5x and h(x) = x 3 + 5x

have 32 + 5 as their derivatives. If many funs-J.:., car

have the same derivative then we cannot hope to doi.erm:ne a

functicn completely fr.,:m knowledge of its derivatives alone.

next two theorems, however, show that the indeterminacy

is of a particularly simple kind.

::Jorem I. If f iF continuous in [a,b] and f'(x) = 0 for all

x in (a,b) then f(x) is constant in Ca,l211.
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Proof. Let d be any point in (a,b) and let c = f(d). For

any x in [a,b], x # d, we can apply the MVT to either [d,x]

or [x,d], depending on whether x > d or x < d. In either

case we get

f(x) - f(d) = (x - d)f1(0

with between x and d. Since is in (a,b), f,(E) = 0,

and so

f(x) = f(d) = c

for any x 'n [a,b].

Theorem 2. If f and g are continuous in [a,b] and f'(x) = g'(x)

for all x in (a,b) then f(x) and g(x) differ by a constant in

[a,b].

Proof. Define a function h by

h(x) = f(x) - g(x) for all x in [a,b].

Then

hl(x) = f'(x) - g'(x) = 0 for all x in (a,b).

Thus according to Theorem I we see that h(x) = in [a,b].

Since h(x) = f(x) - g(x) we have

f(x) - g(x) = c for all x in [a,b].

509
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We see then that f' really does determine f except for

an additive constant. Suppose we want to find the most

general anti-derivative of, say,

3x
2

+ 5.

(By an anti-derivative of 3x
2 + 5 we mean a function whose

derivative is 3x2 + 5). In order to solve this problem we

first find a particular anti-derivative like

x
3 + 5x

and then tack on a constant

x
3 + 5x + c .

In particular, for the falling body problem where

v'(t) = 16

we see that v(t) will be given by

v(t) = 16t + c .

The value of c in a particular case can be found by

giving the velocity at a particular time, most often when

t = 0. Thus

v(0) = 16.0 + c = c .

57
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If the body drops from rest then the initial velocity at

t = 0 is 0, so that v(0) = c = 0. If the body is thrown up

or down then c will have some other value.

Looking at the situation geometrically we see that the

anti-derivatives of a givon function consist of a family of

curves obtained by graphing one anti-derivative and translating

this curve up and down. This is illustrated for fl(x) = x2
in

3
Figure I-I, where f(x) has the form f(x) = + c.

Figure I-I

571
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of

As is easily checked by differentiation, an anti-derivative

xx
n

is n + I

for any rational number n execpt n = -I. The most general

anti-derivative of xn is

x
c.

n + I

This observation enables us to find very easily the anti-

derivatives of polynomials. Fcr example the most general anti -

derivative of

will be

5x
3 4x

2 - 7x + 3

4 4+ 3
fix' + 3x + c.

In fact, every differentiation formula can he reversed to

give an anti-differentiation formula. For examnle, we have

seen that the derivative of arcsin x, is 1/iT-7-77 ; hence

the anti-derivatives of 1/IT-7-77 are arcsin x + c.

The basic theorems on differentiation tell us that if

functions are added, subtracted, or multiplied by constants

their anti-derivatives behave the same way, but unfortunately

564 579
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there are no formulas for products, quotients, or composition

of functions. Because of this we cannot in general find

simple formulas for anti-derivatives, for instance, for

sin(x
2 ), but in the next section we shall see that an anti-

derivative can always be obtained as an integral.

We can, however, use the chain rule in a reverse way

that vastly expands the set of functions we can handle.

If

F(x) = G(u(x)),

where u is a function of x, we know from the chain rule that

F'(x) = G'(u(x))u'(x).

Now, if f is a function that can be written in the form

f(x) = g(u(x))u'(x),

for some g(x) and u(x), and if F and G are anti-derivatives

of f and g, then we must have

F(x) = G(u(x)) + c.

Example I. Although we cannot get a simple formula for an

anti-derivative of sin(x2) we can for x sin(x2). For let

u(x) = x2. The.' u'(x) = 2x, and

x sin(x2) = sin(u(x))u'(x).

1

Since ..sin u has the anti-derivative -cos u, we get the anti-

derivati..3s of x sin(x2) to be 4-2 cos(x2) + c.

565
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This so-called "method of substitution" is much easier

to handle In terms of differentials. Since dF = Fl(x)dx = f dx,

to find the anti-derivative of a function f amounts to the

same thing as finding the "anti-differential" of dF, From

this point of view the method of substitution takes the form

dF = f(x)dx = g(u)u'(x)dx = g(u)du;

i.e., dF, instead of being expressed in terms of x and dx, is

expressed it terms of u and du. This accounts for the name of

the method, i.e., u is substituted for x as the independent

variable.

Example I now takes the shortened form;

dF = x sin(x2)dx = 4..1.in(x2)d(x2) = sin u du,

1 1

F = - -cos u + c = -7cos(x2) + c.

In a simple case Ilke this one usually omits all reference to

u and Jumps at once from the second expression for dF to the

final answer.

.4%1)566
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PROBLEMS

I. In each of the following exercises, find an anti-

derivative of the given expression.

(a) f(x) = 7 - 4x + 3x2

(b) g(x) = 2x3 - 3x2

(c) f(x) = 3x5 - 25x3 + 60x

2
(d) g(t) =

3
(t + 2)

32
- t

- 2
(e) f(x) = 7

2 67

(f) f(x) = sin x cos x

(g) f(y) = saalx._
sin 2y

(h) f(0) = sin 20 cos 20

(1) dF = (4x3 - 5x + 7) dx

(J) dF = (x3 + 2)3 dx

(k) dF = x2(x3 + 2)3 dx

(I) dF
x3 + 2x2 + 3 dx

x2

(m) dF = (y7 + 17 - 5) dy
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(n) dF =
4
r:77,77 dx

(0) dF = r77-07
dx

A7

(p) dF = + 2z3/2) dz

(q) dF = 5(y - 6)4 dy

(r) dF = sin70 cos() de

2. An automobile tire rolls down an inclined plane 200 ft.

long with an acceleration of 8 ft /sect. Find the

position function of the tire if it is given no initial

velocity. How long does it take the tire to reach the

end of the plane?

3. A brick is thrown directly upward from the ground with

initial velocity of 48 ft/sec. Assuming no air resistance,

how high will the brick rise, and when will it return to

the ground?

4. Starting from rest, with what constant acceleration must

a car move to go 120 ft in 4 sec?

5. A curve C has the property illustrated

in the figure. Here P is any

point of the curve, PB is per-

pendicular to the tangent PT,

568
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PA is parallel to the xaxis, and a is a constant

distance between A and B.

(a) What are the possible equations of C?

(b) If C goes through the point (-2, 4) what are

its possible equations?

577
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2. The Fundamental Theorem of Calculus

Back in section 3-8 we obtained the formulas:

cos t dt = sin x and 4 sin t dt = I - cos x.

These formulas were used in turn to derive inequalities such

as

3

Tr
x
5

x - < sin x < x - Tr for x > 0,

by means of which we were able to tabulate the sine and cosine

functions.

This is just one of many uses of integrals with a variable

upper limit of integration:

f(i-)di-.

Here in this section as well as hereafter we will have

much use of functions defined by such formulas as

rx rxi
F(x) = j

o
sin t dt or F(x) = j

I t
dt

or in general

fx
F(x) = Ja f(t)dt.

In the case that the integral, f(t), is positive and

x > a we have the area interpretation at our disposal. So

570
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in Figure 2-I we see that different values of x yield different

areas, F(x) .

a

Figure 2 -I

What we are most concerned with is the derivative of the

function F. Accordingly let c be some number between a and b,

and then from the definition of the derivative

F'(c) = lim
F(x) - F(c)

x--sc x - c

Looking at the numerator of this difference quotient we see

that

F(x) - F(c) =
c

f(t)dt - f(t)dt

f(t)dt

511 579
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This is depicted in Figure 2-2.

Figure 2-2

a

(b)

The entire shaded area in Figure 2-2(a) represents F(x) while

the doubly cross-hatched area represents F(c). Thus the singly

shaded area seen, in this figur- and again in Figure 2-2(b)

represents

F(x) - F(c) jr f(t)dt.

Let us now engage in some loose talk in order to get a

feeling for what is going on here.- Think of the area in

Figure 2-2(b) as a sheet of "two dimensional ice" confined in

a two dimensional container represented by the sides and bottom

of this region.

Imagine that this ice is allowed to melt without changing

its area to form a two dimensional liquid with the top surface

horizontal

512
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before
melting

(a)

after
melting

Figure 2-3

(b)

Thus the rectangle in Figure 2-3(b) has the same area as the

region in Figure 2-3(a). Denoting the height of this rectangle

by h(x) we see that

px
F(x) - F(c) = f(t)dt = (x - c)h(x).

Next we look at what happens to h(x) as x is taken closer and

closer to c.

before
melting

after
melt ing

Figure 2-4

57358
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It seems evident that as x gets close to c, h(x) gets

close to f(c) and in fact that 1(.1..r2 h(x) = f(c).

Armed with these intuitive observations we return to

F'(c) as given in (I),

X

f(t)dt
F(x) F(c)

F( c) = lim I'MX4C X - C X4C X C

(x - c)h(x)
= lim = lim h(x) = f(c).

x+c x - c XC

And so we come to the conclusion that the relation

F' (c) = f(c)

ought to hold true, and in general that

F/(x) = f(x).

And thus we find that starting with a function f, forming its

integral,

fax

f(t)dt,

and differentiating this integral

fx
D
x a
j f(t)dt

gives us back the function f again. Thus the operation of

"integrating from a to x" is a sort of inverse of the operation

of differentiation. Put slightly differently, the function

574 .
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rx
F(x) = j f(t)dt

a

turns out to be an anti-derivative of f. This theorem is so

important in Calculus that it ig called "the Fundamental Theorem

of Calculus." The proof of this theorem is quite short and

follows fairly closely the lines of the above intuitive

discussion, but it does use e and 6. The idea is to show that

for any a> 0 there is a d> 0 so that

if 0 < lx-cl < 6 then

which is equivalent to

F(x) - F(c) f(c)' < e,
x - c

F(x) - F(c)
lim f(c).
x+c x - c

Theorem I. (The Fundamental Theorem of Calculus. First Form.)
rx

Suppose f is unicon in [a,b] and let F(x) = jra f(t)dt. Then,

for each c in (a,b), FP(c) exists and Fl(c) = f(c).

Proof: Let e > 0. Since f is unicon in [a,b] there is a 6 0

so that

If(s) - f(t)I < e

whenever s and t are in [a,b] with Is -t( < 6.

Now if 0 < Ix - ci < 6 , then ior allt between c and x

we have It - cl < 6 so that

51558
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or

If(t) - f(c)I < c

f(c) - c < f(t) < f(c) + c .

Hence f(c) - c and f(c) + c are respectively lower and upper

bounds for the functional values over the interval [c,x], assum-

ing x > c. Hence

(x - c)(f(c) -

< f f(t)dt
c

x - c)(f(c) +

and therefore

f(c)-c < fc
x
f(t)dt

< f(c)+c.X - C

f(c)

Figure 2-5

fc
If x < c a similar treatment of j f(t)dt produces the sar:le

result if this integral is replaced by - jrc f(t)dt. Thus in

either case, since

we get

x
f(t)dt = F(x) - F(c),

-f(c) - c <
F(x)

x -
c(c) < f(c) + c,

which may be reexpressed In the forms

MM
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or

This shows that

F(x) - F(c)-c < - f(c) <x - c

IF(x) - F(c)
- f(c)I < e .x - t

F(x) - F(c)lim = f(c),
x+c x - c

which was to be proved.

A number of instances are at our disposal for verifying

this theorem. Thus for example:

rx
f(x) = sin x, F(x). = A sin t dt = l-cos x, F'(x) = sin x = f(x);

X
f(x) = x2, F(x) = jr0 t

2
dt = F'(x) = x2 = f(x).

In the next section we will see another useful form of

the fundamental theorem and some impressive applications.

:58 *;
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3. Second Form of Fundamental Theorem

The Fundamental Theorem has told us that if f is unicon

on [a,b] and if we define

x

(I) F(x) = jr
a

f(t)dt

then

for all x In [a.b]

F'(x) = f(x) for all x in (a,b).

As has alrt,ady been observed, this means that the function F

Is an anti-derivative of f.

According to Theorem 2 of Section I, any two anti-

derivatives of f differ by a constant. Thus, if G is another

anti-derivative of f we have

G(x) - F(x) = C for all x in [a,b].

And the value of this constant is seen by substitution to have

!-he form

C = G(a) - F(a).

The value of F(a) is seen from the definition In (I) to be

fa
F(a) = j a f(t)dt = 0.

Hence we have

whence

G(x) - F(x) = C = G(a) - F(a) = G(a),

F(x) = G(x) - G(a),
586.
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so that

rx
G(x) - G(a) = F(x) = Ja f(t)dt.

Finally we may state the second form of the Fundamental Theorem

of Calculus:

Theorem I. Fundamental Theorem (Second Form). If f is unicon

on [a,b] and F is an anti-derivative of f on this interval then

fa

x

f(t)dt = F(x) - F(a) for x in [a,b].

The content of this theorem can be mide more meaningful

by putting i.t in sightly different terms. The hypothesis

that F is an anti-derivative of f can be expressed as

F/(x) = f(x) for x in (a,b),

so that the conclusion of the theorem may be phrased

I,
x

F'(t)dt = F(x) - F(a).

This means that differentiating the function F and then inte-

grating this derivative gives us back the function F (minus a

suitable constant). In other words (in a suitably general sense):

Integration is the inverse operation of differentiation. The

first form of the Fundamental Theorem told us that differentia-
. _
tion is the inverse operation of integration. Now we can see

why we regard these two forms of the theorem as two faces of the

same coin; the two forms taken together tell us that integration

579 587
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and differentiation are Inverses of each other (again, In a

suitably general sense.)

At the beginning of Section 3-4 it was promised that the

seemingly useless dx In

f (x) dx

would eventually be explained. Now the reason for it Is almost

obvious. It Is evident that when the notation was invented,

integration was thought of as taking an anti-differential -

that f(x)dx Is the differential dF of the function F that we

are seeking. Since, as we saw In Section I, this point of view

Is convenient in the substitution method of finding anti-

derivatives, the notation is still the one most commonly used,

even though modern mathematics emphasizes functions and

derivatives rather than differenilals.

The first application of the Fundamental Theorem is a

powerful method for evaluating integrals.

rw/3
Example I. Evaluate 4/4 cos x dx.

Noting that Dx sin x = cos x we see by the Fundamental

Theorem that

4/4
w/3

cos
ir

cos x dx = sin 7 - sin 7.

3 7
3 - IT

1111
= .''''......7.

a .159.

510 568
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To appreciate the power of this technique for evaluating

integrals, recall the tedious process by which it was shown

in Chapter 3 that

fo
x
cos t dt = sin x.

On the other hand it was quite simple to see that

D
x
sin x = cos x.

And from this easily derived de-ivative formula we see at

once from the Fundamental Theorem that

that

fo
x
cos t dt = sin x - sin 0 = sin x.

Further recall that in Chapter 2 we proved for n = 0,1,2

x
n+1

fox
t
n
dt n + 1

and then "borrowed" this formula for n = 3,4,5,... . This

borrowed formula is now established at once by means of the

Fundamental Theorem, since in a much more general form

whence

x
n+1

D x n + 1

x

x
n x

n+1 On+1 x
n+1

t dt = T-1-17T - n+ I

= -n--+--r

56f,4
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for any rational value of n except n = (This mysterious

exception is the subject of the next chapter.)

This technique motivates the following definition of

the "indefinite integral" which is really nothing more than

a matter of nomenclature.

Definition. If F is an anti-derivative of f then we

define the "indefinite integral" of f as

jr'f(x)dx = F(x) + C.

This indefinite integral of f is nothing more than the

most general form of the anti-derivative of f. The familiar

definite integral

jrab

f(x)dx

can be evaluated by the process

I) evaluate the indefinite integral at b;

2) evaluate the indefinite integral at a;

3) subtract.

That is

fa

b

f(x)dx = (F(b) + C) - (F(a) + C)

= F(b) F(a),

5Do
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We see that the "arbitrary constant" C drops out so

there is no need to write it in this evaluation process.

Example 2. Evaluate

Since

we have

12
5

x
2
dx.

3

jrx
x

x2dx = +

12
5

7

2 5j 2
3

x dx = = 39.

A further notational convention is the writing of

F(x)1

b

a
to mean F(b) F(a).

With this notation the solution in Example 2 can be developed

in the convenient running form

jr5 x3I5 125 8_ 117
2

_ 39
x
2
dx = 2 = 7 -7-

Example 3. Evaluate fon/2 sin2x cos x dx.

Since none of our wellknown derivative formulas leads

to sin2x cos x, we look for some substitution that will

simplify the function to be integrated (this is known as the

integrand). Since cos x dx is the differential of sin x,

if we let u = sin x the integrand reduces to u2du. So
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and

fo

Ijrsin 2 x cos x dx = jru 2 du = 7u 3
= 3Gin 3 x,

7r/2
2sin x cos x

Now there is a way

Tr
I I I I Tr Iwe go from 7u 3

to !sin 3
x to ssin

3
x

/2
to rin 3r - Tsin 3

C.

dx

of

I 3= Tsin x

shortcutting

I
Tr/2

= 71 - 0=

this. Notice that

Why not simply say that when x = 0 and Tr/2, u = 0 and I,

correspondingly, and then go directly from to

3 I7.3. I 03? We can then write the whole process as

follows

Jo

u = sin x, du = cos x dx,

7r/2 ri u3sine x cos x dx = JO u
2 du = 7-

0 =

The inverse trigonometric functions are of interest

mainly because they arise naturally In the evaluation of some

rather simple integrals. From the derivatives of arcsin and

arctan we get the useful indefinite integrals.

//77.71_I

dx = arcsin x + c, 1 < x I,

Jr x2
dx = arctan x + c, co < x < co.

584
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The substitution u = ax, a > 0, gives the somewhat more

general forms

1

-
du = arcsin

a
+ c -a < u < e,

Jr '

du = 1 arctan C
a a

-co < u < m.
a2 4. 2

In the first of each pair we can replace arcsin by

-arccos, but this is rarely preferable.

2

Example 4. To evaluate dx we let u = 2x. This
2 25 - 4x2

gives us

-jr4

.du

4
4

ercsin
-4

4
= (arcsin

5
- - arcsin(--4 )).

5

Since sin is an odd function (sin(-x) = -sin x} it follows

from the definition of arcsin x that arcsin is also an odd

function; hence

4arcsin( 44 = -arcsin .

Thus our integral has the value

515
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4C2 arcsin
4

= arcsio 0.8 = 0.92727522,
5

from tables.

(Tan and arctan are also odd functions. On the other hand,

although cos is an even function arccos is not. In fact, no

even function can have an even inverse function. Why?)

Example 5. To evaluate

r sin 8
de

J I + cos28

we notice that sin e de = -d(cos 0). Hence for u = cos 8

the integral becomes

Example 6.

f -du

I + u2

dx

° x2 - 2x

Letting u = x - I gives

- +arctan u c

= -arctan(cos 0) + c.

r2 dx

+ 4
Jo (x - 1)2 + 3

586
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d u
I

= arctan -14-
u

2 + 3 s
-I

arctan I - arctan

=
2 arctan

ir2= =

5 6 3

55.1

587

.59453.
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PROBLEMS

I. Evaluate each of the following integrals

rx
(a) F(x) =

o
t5 dt

x

(b) F(x) = (4t5 - 2t8 + t) dt

/7.

(c) F(x) =
rx

t
dt

t

(d) F(t) = I 7 dy

Y(e) F(y) - x
3 dx

ru2
(f) G(u) = j (x + I) dx

fl-z
(g) H(z) =

-1
(x2 - 1)2 dx

2. Evaluate the given definite integrals

f2
(a) j i(x + 4) dx

f4
(b) J1 (u2 - 2u + 3) du

fl
(c) j

0
(i7 + 1)2 dx

588
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(d)

(e)

(f)

f6
J3 (x - 2)

1/2
dx

j
4
du

2
2

jc3(x - -) dx

(g) f-'-3
(4x3 - 3x2 + 2) dx

p/8
(h) sin 4x dx

JO

J

r/3
O

singe dose dO

/.25 2
(j) dx

J 4
x2

(k)

(I)

_L.

j49 (67 - /7) dx

/3-1z2
dz

z5

r5 I

(m) j, dt

3. Evaluate the following definite integrals.

(a)

(b)

Jr'
if-7-7

-2
dx

ri
Yr17:77 dy

519
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(c) 412x(x2 + 2) 3 dx

(d)
r-1 2 du

(u - 1)2

f2
(e) ./1 (2x + 1))/x2 + x + I dx

(f)
fl (x2 + 2x) dx

JO Px3 + 3x2 +

(g)
jr4

1

1

/7
)
dx

k ty

(h)

f5/3
J1/3 VI + (3/7)2 dx

r2
(I) J1 ---1_717--:7 dx

x2

jr x
w/4

sin
(j) dx

0 1
cos-x

4. Evaluate the following indefinite integrals.

(a) f3(2x + 1)5 dx

u du

J .12 I

(c) f(x I)(2x + I) dx

( d) fr cos03/2 de

590
5air 8
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(e)

(f)

(g)

u2 + 2u - I

Cu-

du

- x2 + 2 dx
X2

y4
dy

$1713 M77

10

(h) f(4L II dx
x3 X2

(i)

(J)

(k)

(I)

f'

5s + s5. ds

fx sin(1 + x2)dx

1 1

4 - t2
f t

dt

dt

(m) dxfx2 - 4x + 13

(n)
farc-/777) x dx

I + x2

r sin y dy
10 - cos2 y

f du

8u - u2 - 25

r
I + 9r4

dr

55 9
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5, Let R be the region bounded

by the axes and the curve

+ /7 = /7

(a) Find the area of R.

(b) Find the volume of the

"44,

solid obtained by rotating R about the x-axis.

6. (a) Find the area bounded by the axes, the line

x = h, where h > 0, and the curve y = (I + x2)-1

(b) What happens to this area as h gets larger and

larger without bound? Does this seem reasonable?
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ANSWERS

4-3, page 24

Volume I

Chapter 0

a) x < I,

5 -I, page

x >

30

-I, b) x < 5, x >

a) -5 < x < I, b) x > 7, x < -3,

d) x < 5,

g) 0 < x

6-2, page

x > -I,

< 5, x

43

# 2,

e) impossible,

h) x < 2, x #

a) 2x,

6-3, page

b) 2 +

43

x, lx1 - 2x,

a) x2, b) 2x, c) -2x lxi, d)

c) -I < x < 5,

f) x <

x3

6-4, page 43 7-6, page 55

Compare 2a and 3b. Identity function
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Chapter 0

8 -I, page 61 8-2, page 61

Zeros of sine are nv

Zeros of cosine are (2n+l) 2

1

Zeros are n any integer 0
nn

8-4, page 61 8-6, page 61

a) 67 , b) 677:T c) -x Yes

8 -7, page 61

f and its inverse are the reflection of each other on

the line x = y.
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Chapter I

3 I, page 88

The effect is the adding of the latest SUM twice.

3-2, page 88

a) A = 13, B = 13; A = 7, B = 7, b) both, c) different

604

A-3
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Chapter 2

2-2, page 141

a) x = -1.117, b) x = -1.116

c) roots are ± 1,0,0

2-3, page 141

a) x = 1.414, b) x = 5.

c) x = -.758

3 -I, page 145

a) r4 - I, b) Cr" - I)/(r - I), c) (rn - I)/(r - I)

d) 1/(1 - r), e) no, you cannot.

3 -2, page 145

a) k(r4 - I), b) 'k(r4 - I)/(r - I), c) k(rn - 1)/(r - I),

d) k/I - r, e) no, you cannot.

3-3, page 146 3-5, page 147

a) 2, b) I, c) 25/2, d' 21/5 1200 knashes

3-6, page 147

1 I 1

a) 7 + + -TT-decays
2

1 1

771 - ( 7 + + + ) left
2

b) 3(7 + + + ---)decays
2

3 - 3(7 + + + 40 )18f

c) 3(7 + + ... + 120)decays d) 7 decays, 7 left

2

43 - 3(7 + + + -rm)left
2

A-4

2
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Chapter 2

3-6, page 147 - con't.

I 1

e) 16(7 + 3- + 96) decays
2

16 - 16(7 +
I

...
I

) left
2
96

I
I A.

f) + + decays g) 7
1010

2

1

2
10

decays

I I I

)
1 - ( ) left+ I - ( + left

1010 7 2
10 '

2

3-7, page 148 4 -I, page 160

2 min.

4=2, page 160

a) 0, b) 0, c) 0, d) diverges,

e) I, f) IT, g) 5

a) yes, b) no, c) no, d) yes, e) no

4-3, page 161

a) yes, b) yes,

6 -I, page 184

4-7, page 163

c) yes Flow chart

a) 2, b) 8, c) 4, d) I, e) I/2, f) 3/4,

g) doesn't exist,
A-5
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Chapter 2

6-2, page 184

(-1)"(-1)"

7-3, page 192

a) 4r4 b) nrn - r " -1- r3 - r2 - r - I, - - r - 1

e) 1/(r - 1)2

8 -I, page 197

a) I, b) 1/2, c) 0,

9 -I, page 203

a) 7, b) c
1

= I, c2 =

c) c n+2 (9cn + 20)/(4cn

f) n > 7

9-3, page 204

d) 0, e) 0, f) k, g) 1/2

2.3333, c3 = 2.2307, c4 = 2.2363,

+ 9), d) d
n+1

/d
n

= -1/(4c
n

+ 9),

c) 1/2n, d) 501, e) .693

606
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Chapter 3

2-3, page 227

Correct analytical answers:

a)
2 f)

b) (2,7 - 1)

c)
2 (2/7 - 1)

d) 1

e) 2

5 -I, page 251

The maximum error:

a) .003 f) .002

b) .002 g) .002

c) .0014 h) .001

d) .002 1) .002

e) .005 J) .004

6 -I, page 259

a) .05

b) .005

6-6, page 259

a) 6

b) 6 =
20

c) .0005 c) 6 =
2 max(la bl)
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Chapter 3

7-2, page 268

1
24

a) 433 b) 2T - ;rf, c)
7

--5+ 2 log 2, d)

8 -I, page 280

g)
IT

a) 2
25-* b) 25, c) 40, d) 10, e) 55, f)

IT
2 '

gi r-

8-5, page 282

a) 4, b) 0, c) 18, d) 64, e) I, f) -I, g)

h) 2, 1) 129.

10-2, page 297

a)
002

ff
b)

001
ff

01)2
c) .0002, d) .0028,

(.0

1

f) .4.(.00001), g) .7(.00001)
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Chapter 4

3-1, page 351

2 49
a) 45w, b) 6w, c) 3-w, d) lrm, e)

w2

g) 24w, h) 18w, 1) w, J) - w

3-2, page 351

No. Translate a square vertically.

3-3, page 351

b +h

Yes. Since ) Jra+h(
a

y2(x)dx = y2(x h)dx.

4-1, page 363

a) 792.5, b) 15,850, c) $357

4-2, page 363

a) 2000, b) 117, c) 2, d)

4-3, page 364 4-4, page 364

f)A 31, Trw

/Tr b) All of them, c) yes

4-5, page 365-366

a) 14,000, b) 24.5 x 105, c) 10,

2
e)

25 4) 8 x 109

A -$

d) 1.5 x 10-4
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Chapter 5

I_ I_page 381

a) 2-, b) 6 < n, c) 4.2 x 10-6,
d) .00z

1600/min.

1-4, page 382

a) 2280 ft., b) 2 ft/sec. (For fa51'L9r
con vergence 1.1%

in place of 1.) c) t1 = 12 W" 11) -302 ft/zee.
n4

a291

I

a) I, b) 7., c) -I, d) I, e) un
defin

ed, 0 , g) 4,

1

1

h) undefined, i) 0, j)
1

, 10 0 VP2T
I x - tx14222.-j..i ' I , tm) 3., n) 4, 0)

x

2-3, page 396

a) I for all values, b) 6, 34, 2f,

+1, t 7
0
A

c) 48, 3, 3t2, d) +I, -I, undeflne'
0

1--I, 4

I I ei IT
e) , -, f) ---f, ---f, - sin f

2 VT 2J5"

2-6, page 397

a) x = ±2, b) x = ni, n = ±I, '

c) x = nw, n = 0, ±2 p

off2

t

A-I0 6

4.

0,
ondefi,
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Chapter 5

3-11 page 405

a) II, b) 8, c) 4, d) 3, e) 0, f) 7,

3-2, page 405

,
gi

a) x = 0, b) x
f

= -1 x
2

= 3, c) x = 0, d) x = I

3-3, page 405-406

a) 0 for all n, b) not defined

4-1, page 414

1

a) 4, -2, 6, 27r, 10, b) -7 -I

4-2, page 414

4-3, page 414

a) y = 0, b) No

4-4, page 414

0, 3c2

I I-7 r
( I)2
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4-5, page 414-415

a) y 24x - 48, y = 0, b) y = (14 + 8VT)x - III - 64T

y = (14 - 8 /)x - III + 64T

c) There is no line which will pass through the point (8,b)

5-1, page 421

a) I, b) 2x, c) 3x2, d) -sin x, e)

5-2, page 421

5-5, page 421

24-c

a) d, b) c, c) -32, d) S(t) = -I6t2 + 20t + 200

5-6, page 422 5-7, page 422

'192 ft. 96 ft/sec.

5-8, page 422

a) 25 sin 0 sec., b) 10000 cos 0 sin 0 ft,
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6 -I, page 434

a) x = 0, D
x
xlx1 = 0 b) x > 0, D

x
1x1 0 I

x > 0, D
x
x1x1 = 2x x < 0, D

x
1x1 = -I

x < 0, 0
x
x1x1 = -2x x = 0, Dx1x1

is undefined

c) Yes, No

6-2, page 434

a) Dxy = 5x4 + 48x3 - 9x2 + 2 I) D
x
y =

67(x + 4) -

b) Dxy y = 42x5 + 12x2 m) D
x
y =

6x
(x2 + 1)2

c) Dxy = 0 n) D
x
y = I8x2

2 - x
d) D

x
y 0) D

x
y = -(sin x + cos x)

e) Dxy = -csc2x p) Dxy = sec2x - 3x2

f) D
x
y = 5x4 + I8x2 + 2x + 8 q)

x
y

8x - 3x2

(x3 - 4x2 + 1)2

g) Dxy = x sec2x + tan x r) D
x
y = 128x3

(x4 + 16)2

h)
x
y = 3x2 + 4x - 23 s) D

x
y =

-5

4

x2 -Tx

21/7(x + 2)2

6
i)

x
y =

(x + 4)2

J) Dxy = sin x (sec2x + I)

k) Dxy = -cos x (csc2x + I)

t) Dxy = 36x3 + 12x

2
u) D

x
y = 2x -

v) D
x
y = -I0x-2 + 3x-4

A-I3
61
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w) Dxy = x2 + 10x - 18 x) Dxy = 1 +
x14 2x6".< 186Z

6-3, page 435

P1(x,y) = (-3, -57)
P2(x,y) = (-4, -56)

6-4, page 435

x = 0, 2n, 2kir, where k = integers

6-5, page 436

b) No

6-6, page 436

b) 6 = 3

6-9, page 437

a) f f,, f", f(4)

b) ft = 2x, f" = 2, fl" =
f(4) = 0

c) ft = 3x2, f" = 6x, ft" = 6, f (14) = 0

d) ft = 4x3,

e) ft = 50,
f II

f I,

= 12x2, f 111 = 24x, f") LT: 24

= 20x3, f" = 60x2, f") = 120x

A-14
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f) ft = 20x4, f" = 80x3, ft" = 240x2, f
(4)

= 480x

g) f' it cos X f" = -sin x, f" = -cos x, f
(4)

= sin x

h) ft = -sin x, f" = -cos x, f" = sin x, f
(4) = cos x

I) f' = 2 cos x + 3 sin x, f" = -2 sin x + 3 cos x,

V" = -2 cos x - 3 sin x, f
(4) = 2 sin x - 3 cos x

6-10, page 437

a) 3 ft, b) 3 ft/sec, c) w sec, d) 3 ft/sec,

e) 0,
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2 -I, page 449

a) Local: Max at x = 0.

b) Local: Min at x = I, x = -I.

c) No extrema.

d) Local extrema: Max at x = 5,

Min at x = I.

e) Local extrema: Max at x = -I,

Min at x = I.

f) Local extrema: Max at x = J73,

Min at x =

g) Local: Min at x = 3.

h) Local: Max at x
5,r

3

A-I6 6 fj
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i) Local extrema: Max at x = .46, x = .46 - 2n, x = 2n

Min at x = .46 + v, x = .46 - n, x = -2n.

J) Local extrema: Max at x = 0, x = 2v,

3Min at x = 7m, x = , x = -2v.

2-2, page 450

Length = 50 ft, Width = 25 ft

2-3, page 450

Length: 22.5 inch.

Width: 22.5 inch.

2-4, page 450

x =
A

Y = , max. area of the rectangle:
AFl4

2 -6,2-5, page 451 -6, page 451

a

r= 41,7 . x= /7 IT

2-7, page 451 2-9, page 451

8, 8

A-17

617

x = 6 - 213
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2-10, page 452 2-11, page 452

x = 134- Y = 263 ,
3

z = 5-1

2-12, page 452

r = h

2-13, page 453

3H2R - HR 1H2 - 8R2r

a) R = 2

b) R = 3

c) R = 4

4(R2 + H2)

h = r

provided that H2 > 8R2

(L-oa "4

0 I 2 3 4'

2-14, page 453 2-15, page 453

0 = 30
o

2-16, page 454

b) x has to be in [b-a, b+a].

A-18

Min at x = 4.913

Max at x = 2.029

4 -I, page 468

5
a) =

2
b) Q =

124 1
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4 -I, page 468 (cont.)

c) 4 = 7:715- , d) = 1, e) =
4

.

5 -I, page 477
5-2, page 477

.81 cu, inch.

5-3, page 477

2.2361, 1E1 < .00004

6 -I, page 488-489

a) 2.03, 1E1 < .00064

b) 1.070, 1E1 < .00244

c) .5407, 1E1 < .0011

a) Local extrema: Min at x = -I, Min at x = 2,

Max at x =
1

Critical point: x =
1

2

1

f(x) is increasing on [ -1
'2
] and decreasing on C7,21

b) Local extrema: Max at x = 3

Min at x = -1

Critical points: x = 3, x = -1

f(x) is decreasing on (-0),-1], increasing on [-1,3] and

decreasing on [3,00._-

A-19
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c) Local extrema: Min at x = -3, x = 3

Max at x = 0

Critical point: x = 0

f(x) has to be restricted to the interval [ -3,3].

f(x) is increasing on [-3,0] and decreasing on [0,3].

d) Local extrema: Max at x = 0

Min at x = I

Critical point: x = I

f(x) has to be restricted to the interval [0,02).

f(x) is decreasing on [0,1] and increasing on [1,03).

e) Local extrema: Max at x = -4, x = -I

Min at x = -2

Critical point: x = -2

f(x) is decreasing on [-4,-2] and increasing on [-2,-I]

f) Critical point: Min at x = 0

f(x) is decreasing on (-33,03 and increasing on

g) Critical points = end points.

Max at x = -4, Min at x = 0

f(x) is decreasing on [-4,0].

A -20
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h) Local extrema = critical points.

Max at x = 0, w, 2w, Min at x =
2w

.

3

4w
3

f(x) is decreasing on [C,:1], increasing on 411,w3,

4w 4w
decreasing on Ew,3-.J and increasing on [T-,2w].

6-2, page 489

Critical points x = w + 2nw,

no extrema.

6-3, page 489

3
y = -4.x2 + x +

n = 0,1,2,3,... .
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1-1, page 504

a) -10(1 - x)9, b) -3x-4(2 - x-3)-2 c) 15x2(x3 - 4)4

f) 2(3 - 2x)4(3x2 + 4)2(-33x2

x235/2,1) _5/2
d) 7(x + I)3'2, e) -7 x [(I + x2)3/2 (1 + [I5 3/2 15

+ 27x - 20)

g)
3(x3 + 2x + 1)2(x4 + x2 - 2x + 2)

h) 2
1

,

(x2 + 1)4 X
1/2

(1 - X)
3/2

A77 7
1

3p- x
i) j)

2
vx, k) 1)

2x,

(I - x2)3/2 4/x( AT + 1) + 8x2

m) -3 sin 3x - 2 cos x

page 505

n) (2x2 - 4x)sin x2 + 4x sin x4 - cos x2 + 8x5 cos x4,

o) -sin 2x cos(cos 2x).

p) cos[sin(sin x)][cos(sin x)](cos x),

q) (x + 3)(x2 + 2x + 1)2(x2 + 4)3[2(x2 + 2x + 1)(x2 + 4)

+ 3(2x + 2)(x 3)(x2 + 4) + 8x(x + 3)(x2 + 2x + 1)],

8x
x2 - 8x - 33

_ 3x2 4.

(x - 4)2
r) s) (0 + 4)3/2

A-22

6 o



www.manaraa.com

Chapter 7

t)
(x3 + 3x - 4) (-0 + 2x4 + 5x3 + x2 + I6x - II)

2(x + 3)3

u) 3(x + 5x - 6x -1) (4x
3
+ 5 + 6x

2
), v) 0,

w) sin x + x cos x, x)
cos x

y)
2yrs-i7-1 24Z

z)
2 cos x

sin3x

page 505

a) f' = x(x2 + 1)-1/2

f" = (x2 + 1)-3/2

b) f' - -(3x2 - I)

(x2 + 1)3 '

c) f' = 2 cos 2x d) f' = 3 sec23x

f" = -4 sin 2x f" = 18 sec23x tan 3x

= 2x(sin 2x + x cos 2x),

cot 2xIT
f) f'

'(sin 2x) 1 F (sin 2x)3

1-6, page 506

flt

fll

fll I2x(x2 - I)

(x2 + 1)4

= 2(1 2x2)sin 2x + 8x cos 2x

/2 77,72; (2 + sin24x)

a) Local extrema: Max at x = iT7T, x = 1

Min at x = -J77, x = I

f(x) restricted on [-1,1]

Critical points x = i172, x

6
A-23
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b) Critical point x = 2

2 -I, page 516

a) l = b) y' -
(2y + x2) c)

Y 2x + 5y2

-1

4
1)

2
f)

2x

d) y' = Tr-77, e) yl =-7L-;=25, yl Y

x - 447

3x2 + 2xy2 - h) y' - - 1,5 1) Y1
= osc x-sin

2 - 2x2y 04
cos y s n

2-2, page 516

a) y111 d) y"
-8

(I - 2y)3'

m) Y" ,e

.3/2

COS COS

I) [(x cos y - sin x)(-y sin x 4 y y Y)

cos y
-(y cos x - sin y)(-xyl sin y cos

2-3, page 516

a) x =
-3 ± /5

b) y =
3

A-24

f (3

x)Icx y - 51
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2-4, page 517

a) y = c x + k, b) Q(x,y) = (-c,0)
ire

3-3, page 530

a)
2

4-77777

d)

5
b)

11=7=
c) - 1

X2 4-

1

e)
2t

f)
6(1 + arcsin 3x)

2x(1 - x) 1 - t4 -6747

g) arcsin x,
2x2

h) )

3
, k) 1)

I /T=72 arccos x

2
,
varcsin 3x( I - 9x2) x2 + I

/1 - x2

m)
6,77=7
2y(1 - y)

n)
2y(1 - 4y2 arccos 2y - y)

1 .! 4y2

3 sec2x 3
0) P) 5 + 4 cos x

1 + 9 tan2x

3-4, page 531 3-5, page 531

yes f'(x) = 0

3-6, page 531 4 -I, page 536

x = 6/TT ft.
1 .in./sec.

18ff

4-2, page 536

47r
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4-3, page 536

-1 ft/sec.
4

4-5, page 537

3V10 ft./sec.

4-6, page 537

8
ft/sec.

6-1, page 547

a) dy =
- X2

-x
dx,

-2x + vc) dy 2dx,

Chapter 7

4-4, page 53&

5 ft./min.

4-8, page 538

13
a) ft/sec.

8

x2 + 2x - 1

b) dy - dx,
(x + 1)2

cos y - y cos xdx
d) 'dy = sin x + x sin y

e) dy = -cos z sin x dx,

g) dY = 111-(dx,

Y 2

6-3, page 547

cos t - t sin td_
f) sin t + t cos t A'

I 2 2z2 z3h) dy = 1-(X + X + 2z x

a) dw = .-.1. '!:1-du - dv b) D
u
v = --.L-D

u
w -

u v w u

du = -11 dw - 9- dv
w v

dv = dw - - du

A-26
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7-2, page 551

a) Dxy = 2T , D2y = -4t3
4t3

b) D
x
y = csc 0, D2y = -cot30

c) D
x
y = -cot t, D2y = icsc4t sec t

3

d) Dxy = D2 -1xy = -
3

,

Y

cos t - cos 2t
e) D

x
y sin t - cos 2t '

02 2 + 2 cos t[sin 2t - cos 2t3 - sin t(sin 2t +
x'

7-5, page 552

a) x = a cos + a 8 sin

y= a sin - a 8 cos

2(cos t + sin 2t)3

64, 7
A-27

7t)
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I -I, page 567

a) x3 - 2x2 + ix + c, b) .-x4 - x 3 + c,

c) 1 6 25c, 7x - 7x4 + 30x2 + c, d) .5(t + 2)
5/2 2

- + c

3/2 1/2
e) - 4x

1/2
+ c, f) 7sin-, x + c, g) (sin 2y)

i) x4 - .X2 + 7x + c,h) .sine 2 0 + c,

J) 47)(1°
+ 4x7 + 3x 4 + 8x + c, k) 4(x3 + 2)4 + c,

2

7

3
+

2
/
5/2

4- l2 3/2I) + 2x - c, m) w
'2

ge 5y + c,

6 7/8 4 /4
n)

4
4-(x + 1)

5/4
.7+ c, o) x

7
x
3+

c,

p) 324/3 +
4Z5/2
5

+ c, q) (y 6)5 + C,

1-2, page 568 1-3, page 568

5)/7 sec

sines
r) --u-- + C

The brick rises 36 ft and returns after

3 sec to the ground.

1-4, page 568 1-5, page 568

c = 15
x2 x2 2a ) y= ra- c, b)y=n--g- 4 + c
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3 -I., page 588

a) .x6,

Chapter 8

b) - ;.40 + 4N2,

e) 4-(y - 104),

1g) T5E3(1 - z)5 - IO( I - z)3 + 15( I - z) + 8]

2
c) 2(/' - a), d)-3 N

3/2

f) 4(1.14 + 2u3 + I),

3-2, page 588-589

a) 13
1

, b) 15,

g) -102, h) ,

k) 10
3'

1)
-462'

3-3, page 589-590

14
a)

3 '

17
,c) d) 4

2
6

, e) 2, f) 3.

Ii) dT
$7-1,

j) function not continuous at zero

m) 2(1 - I
/3.

b) I d) , e) Y7
c) 1(34 - 24), 14 r-

- 233 ' 4 3

""
3iT 12 3f) I, g) 4 , h)

1

I) -
IT

,
6 Tg.

3-4, page 590-591

c)
2 3 1 2a)

1742x + 1)6 + c, b) 4777 + c, c, 34c x + C,

;v5/2 4
-4.1

3/2
- 2u

1/2
+ c,d) rine 3/2

+ c, +
3

2.1----
f) 4..x2 x ..c. + c, g) ry7 + 2 + c, h)

A-24U)

1

-.2-2(1 1)11 + c,-=-
XL
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I 3 5 2
I 2 .

) TS + ..5 r c, J) same as d, k) arcsin 7 + c,

- 2
I) 7 arcsin t2 + c, m) 3.arctan

x

3
+ co

n)
2 t)
.-(arctan x)

32 (cos
+ c, o) -arcsin + co}(arctan

ITU

u - 4
p) arctan

3
+ c, q) r arctan 3r2 + c.

3-5, page 592 3-6, page 592

a)
w

b) TTa
3

A-30

a) arctan h

b) lim arctan h =

630
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INDEX VOLUME I

Absolute convergence, 157
Absolute value, 17,33
Acceleration, 419
Algorithm, 65

for area, 219 ff.
for Fibonacci sequence,

108,158
numerical, 73

Anti-derivatives, 562 ff.
Approximation

of extrema, 455 ff.
of function value, 470 ff.
of integrals, 211 ff.
of limit of sequence,

125 ff.
of root of equation, 136

Area, 207,325 ff.
Arithmetic units, 103
Assignment box, 79
Assignment statement, 79
Axiom(s)

Archimedean, 7
completeness, 202
of real numbers, 6

Bounded sequence, 173

Chain rule, 499
Circle, unit, 50

area, 125,211,347
Coefficient

of polynomial, 45
Completeness axiom, 202
Composition theorem, 399
Computer, 65

concepts, 65
language of, 105 ff.
memory of, 77,94 ff.
model of, 76 ff.
word, 95

Compiling, 105
Control unit, 103
Convergence

of sequences, 132,149,
153,154

1

Continuity, 386,387
Continuous functions,

386 ff.
Coordinate(s),.37

system, 36
Cores, 95
Curve

slope of, 410
Cycloid, 549

Decision box, 68
Definite integrals, 582
Derivative(s), 408 ff.

chain rule for, 499
of composite functions,

495 ff.
formulas, 418,426,428,

429,527
of implicit functions, 509

Differential(s), 541 ff.
Differentiation, 407 ff.

explicit, 509
implicit, 509

Error, 471
in approximation, 219
bound, 473
roundoff, 118,438

Extended mean value theorem,
464

Floating point, 116
Flow chart, 67 ff.

for maxima, 458
for root of an equation,

140
for trapezoidal rule, 226

Formulas for volumes and
areas, 449

Fraction, 3
Function(s), 31 ff.

circular, 49
composition of, 57
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Function(s) - con't.
constant, 38,542
continuous, 386
decreasing, 53
derived, 416
domain of, 33
graph of, 37
greatest integer, 47
identity, 39
increasing, 53
inverse trigonometric,

525 ff.
linear, 46
monotone, 53,479 ff.
piecewise monotone, 229
polynomial, 44
range of, 34
rational, 46
roots of, 46
strictly decreasing, 53
strictly increasing, 53
unicon, 254

Fundamental theorem of
calculus, 575,579

Greatest integer function,
47

Identities, trigonometric,
275

Inequalities, 12,13
triangle inequality, 20

Input, 89
Input box, 90
Integer, 3
Integral

approximation of, 221 ff.

definition of, 235,317
definite, 582
indefinite, 582

Integration, 234 ff.
by substitution, 566

Intermediate value theorem,
403

Interval, 25 ff.

Law of the Mean, see Mean
Value Theorem

Limit(s)
of a function, 374 ff.
of a sequence, 156

Lipschitz(ian)
coefficient, 293
condition, 293
function, 293,431

Local maximum tests, 446,
485,486

Local maximum point, 443
approximation of, 455

Machine language, 105
Maximum theorem, 441
Mean

arithmetic, 28
geometric, 28

Mean value theorem, 462
applications, 470

Modulus, unicon, 290 ff.

Numbers, 3 ff.

Ordinates, 36

Parametric equations, 548
Piecewise monotone

functions, 229
Polynomial, 44
Pythagorean theorem, 4

Rate of change, 533
Rational numbers, 3
Real numbers, 5
Related rates, 533
Rolle's theorem, 463
Round-off error, 118,438

63,2
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Samos, 94,103 ff.
Sequence, 125 ff.,149

bounded, 173
convergence of, 132,153,

154,156
Fibonacci, 158
limit of, 156

Slope of a curve, 410
Solids of revolution, 340
Speed, 367
Squeeze theorem, 189,394
Step function, 48

Tangent line, 407
equation of, 410 ff.
slope of, 410 ff.

Taylor's theorem, 465
Trapezoidal rule, 266
Trigonometric functions,

51 ff.
. Trigonometric identities,

275

Variable, 36,76
Velocity, 368
Volume, 337

formulas for, 449
of solid of revolution,

340

Weighted average, 187
Work, 360

63
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Chapter 9

THE LOGARITHMIC AND EXPONENTIAL FUNCTIONS

1. Logarithms and Exponentials

JaWe have just seen that t
n dt is easy to evaluate

for all rational values of n except n = Obviously the

formula

I,
b

t
n+I

t
n
dt = n + I a

cannot be used when n = -I. On the other hand, since t -1

is a continuous function if the interval ra,b] does not

contain zero, the first form of the Fundamental Theorem tells

us that there is a continuous function

rx
-1

L(x) Ja t dt

rb
with L(a) = 0 and L(b) = j ra t

-I
dt. What is this function

L(x)? Do we already know it or is it something entirely new?

To answer these questions we shall start by developing properties

of L(x) directly from its definition. To be entirely unambiguous

we define

f
L(x) = j

x

t
-I

dt, x > 0.
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The first obvious things to

notice about this function are:

(i) L(I) = 0;

(ii) If x > I, then L(x) > 0;

(iii) If 0 < x < 1, then L(x) < 0;

(iv) If x > 0 then LI(x) =

Property (i) is the simple computa-

tion

L(I) = ft
d-t- = 0.

I

For (ii), the integral

jfx

I

7<lt

can be represented by the shaded

area in Figure I-1(a) which is of

course positive. If 0 < x < I,

then the shaded area in Figure I-1(b)

is represented by

SO

1dtfx t

I Tdt > 0.

Therefore, in this case

594 64 t

(a)

(b)

Figure I-I
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J1

x
I

rl,
dt = ix t < 0,

making (iii) true. Finally, (iv) follows at once from the

first form of the Fundamental Theorem.

With this information we can estimate the shape of the

curve y = L(x). It goes through (1,0), Is strictly increasing

since L'(x) > 0, but the rate of increase decreases since

L"(x) = -I/x2 < 0. This gives

us a shape somewhat like that

shown in Figure -1-2 but we need

more information before we can

settle such items as asymptotes.

The next properties of

L(x) are not as obvious as the

first four

(v) For any a > 0, b > 0,

L(ab) = L(a) + L(b).

Figure 1-2

(vi) For any a > 0 and any rational number n,

L(an) = nL(a).

Proof. (v) Consider the derivative of the functic.n L(ax).

By the chain rule
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1
1

D
x
L(ax) = ax

D
x
(ax) = --

a1x
e = = D

x
L(x).

Since L(ax) and L(x) have the same derivative, by Theorem 2

of Section 8 I they must differ only by a constant, i.e.

(I) L(ax) = L(x) + C.

The constant can be determined by putting x = I. This gives,

from (i),

L(a) = 0 + C, or C = L(a).

Putting this value for C in (I) and setting x = b gives the

desired result.

(vi) is proved similarly. We have

D L(x
n

) = In nx
n-1 1= n = D

x
(nL(x)).

x

Hence

L(xn) = nL(x) + C,

and setting x = I gives

0 = 0 + C,

so that the result follows on putting x = a.

6 647
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Properties (v) and (vi) are the one we commonly associate

with logarithms, and so the suspicion arises: Is L(x), after

all, the same as log x, or perhaps closely associated to it?

To show that the answer is "yes" we must investigate the

inverse function of L(x), since log x is defined in terms of

its inverse function: i.e. y = logax if x = ay.

We have seen that L is strictly increasing on (0,00) and

so it has an inverse function which we call the exponential

function, abbreviated by exp. That is, exp(L(x)) = x. Now

the domain of exp is the range of L, and we should first of

all determine this.

Let a be any number greater than I. Then by (ii),

L(a) > 0. Now L(an) = nL(a), and sincen can be arbitrarily

large we see that L(x), for x = an, can be arbitrarily large.

Similarly L(x) can be arbitrarily small. Thus the range of

L, and the domain of exp, is 00). The range of exp,

being the domain of L, is (0,00).

Each of the properties (i) to (vi) of L can be trans-

lated into a property of exp, as follows:

(II) exp 0 = I;

(ii') If x > 0 then exp x > I;

(iii') If x < 0 then exp x < I;

597
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(iv') D
x
exp x = exp x.

(v') exp (a + b) = (exp a)(exp b)

(vi') exp (no) = (exp a)n for any rational n.

We shall prove (iv') and (v') as s mples, leaving the rest

to the reader.

Proof. (iv') Since L and exp are inverse functions we

have L(exp x) = x. Differentiating gives

L'(exp x) Dx(exp x) = I.

Since, by (iv),

L'(exp x) = exp x

this gives Dx(exp x) = exp x.

(v') Let exp a = A, exp b = B. Then

a = L(A), b = L(B) and, by (v),

L(AB) = L(A) + L(B) = a + b

This, in turn is equivalent to

exp (a + b) = AB = (exp a)(exp b).

Define

e = exp I.

Then if x is a rational number

(I) exp x = exp (x1) = (exp I)
x

= ex.

7,1 598 64 .9
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Now if x = 2. is ratioal,i:lx has a definit.e meaning, namely

,717 , (we :.:an assume q > C). For irraticnal values of x,

e.g. x = )47eir, etc. s
ex has not been defined. We now take

equation (I) to be the definition in this case, so that for

all values of x we have exp x = ex. Thus exp x and e
x are

simply two ways of writing the same function. ex is the

more common, and makes it easier to apply properties (I')

to (vi'). Exp x is common in computer work, and is

convenient when x is a complicated expression, e.g.

ex
I - exp +

I + exp

Now since y = L(x) is the same as x = eY we see that

L(x) = logex, the natural logarithm of x. Hence we will

abandon the notation L(x) in favor of log x, the base e

being understood. The important new property of log x is

( i v) D
x
I og x = I .

Note also that from the definition of e,

log e = I.

59965
0
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How large is e?

From Figure 1-3 we can

see that e < 4. For

the shaded area is

larger than the sum of

the areas of the

rectangles,

log 4 =
4

dx
I x

> 2 + 3 + 4 > ,

Figure 1-3

Hence, since exp is an increasing function,

exp(log4) = 4 > exp I = e.

We now apply Taylor's Theorem (Section 6-3). If

f(x) = e
x then fl(x) = e x

, f"(x) = e x
, etc. Putting a = 0

and b I in Taylor's Theorem gives us, since e° = I,

where

e = I + I + + Tr + Tr + + Rn,

Rn
(n + I).

0 < < I.

Since ex is increasing we therefore have, from the above

bound on e,

600 651
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4
0 < R <

n (n +

Taking n = 10, for example, gives

+ + + +
2

. , . . = 2.71828185,

with an error of at most
2

< 5 x 10
-8

We can now make a careful graph of log x and ex, as

in Figure 1-4. The two curves, being graphs of inverse

functions,are symmetric with respect to the line y = x.
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The negative x-axis is an asymptote to y = ex, and the

negative y-axis to y = log x, but there are no other

asymptotes; and, of course, no extrema since both functions

are strictly increasing.

Example ! A function of the form

y = Ae
-ht .sln(wt + 9),

where A, h, w, and e are constants, is said to define

damped harmonic motion. A is the initial amplitude, h the

damping factor, 77-ri the frequency, and 9 the phase angle.

The graph of such a function is shown in Figure 1-5.

Evidently the graph crosses the x-axis when sin(wt + = 0,

and it is easy to show that it is tangent to one of the

curves

y = Ae
-ht

and y = -Ae-ht

Figure 1-5

Sn
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at each critical point of y = sin(wt + 8), (Problem 17).

This information makes it relatively easy to draw the curve.

The method of defining ex for irrational values of x

can be extended to ax for any positive number a.

rational then

and hence

log ax = x log a

ax = ex
log a

If x is

We therefore take this, equation as the definition of ax

for irrational values of x. It then follows (Problem 2)

that

and

log a
b

= b log a

(a
b

)
c = abc

for any positive a and any values of b and c.

Now we finally complete our formula for the derivative

of x
n.

Theorem I. Dxxn = nxnI for any n and any positive x.

603 65
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Proof, Let y = x ". Then

and

log y = n log x,

1 y = n

y = n Y = nxn
-I.

We have already proved that this formula also holds

for all values of x if n = 2- where p is any integer and q

is an odd integer.

The corresponding anti-derivative, or indefinite

integral formula is:

fxndx =

n+I
x + c, if n -I, for

log x + c, if n = -I, for x > 0

log(-x) + c, if n = -I, for x < 0.

all x, if n

p and q Intl

q odd;

x > 0 other

The last case is easily checked. Some writers combine

the last two cases in the form

log Ix' + c, for all x # 0.
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This is convenient to use but is subject to the danger

that one may forget the restriction x # 0 and jump from

positive to negative values of x with disastrous results.

It is safer, and often more illuminating, to consider what

the sign of x is and use the appropriate formula for the

integral. We shall see some examples of this in the next

section.

We can add here another basic indefinite integral.

jre x dx = e x
+ c

This follows from the fact that Dxex = ex.

Our method of getting Dxxn is of enough general use

to be given a name, "logarithmic differentiation." It is

particularly useful for functions expressed as products,

quotients, and powers.

Example 2. Differentiate e2x
'sin 2x

/x log x

Setting y equal to the given expression and taking

logs gives

log y = 2x + ..Clog sin 2x - log x - log log x].

605
j
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Hence

try' = 2 + 11....s7717x(cos 2x)2 - x - I

ilog x 73

and so

YI = [2 + cot 2x -
II 11 2x /sin 2x
2x'' Tc775-7'e ix log x '

Example 3. Differentiate xx. If y = xx then

log y = x log x

vi
-1-- =
y

lOg x
+ X 7

= log x + I

NI I = xx(log x + I).

606
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PROBLEMS

I. Prove (iv), (ii'), (iii'), and (vie).

2. Prove:

(a) log a
b

= b log a,

(b) (a
b

)
c

= a
bc

.

3. Prove:

4. Derive:

lo^ x =
log x

'a log a

(a) Dx ax = ax log a,

(b) D
x

log
a
x x log a

5. Are 2 log x and log x2 identical functions?

6. Show that if f(x) = Ae
kx Then f' (x) = kf(x).

7. Prove that if 0 < a < b then

ax < bx if x > 0,

ax > bx if x < O.

8. Differentiate each of the following and simplify if

possible:

(a) e
ax

, a constant

601
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(b) (I + ex)2

(c) x2ex2

(d) jog (x + 3)

( e )

(f)

(g) exp f777.7-1

(h) e
3x

log (e
3x

+ I)

(i) e
-2x sin 2x

(j) 3Y x3

(k) x(Iog x - I)

(I) log sin x

(m) log (sec x + tan x)

(n) log (x + 17777)

x - e
-x

(o) arctan (
e

p) log log (I + x2)

(q) (x2 - 2x + 2) ex

(r) eax sin bx

(s) e
3x (4 sin 4x + 3 cos 4x)

608
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9. Find In each or the following and simplify if

possible:

(a) y = x2 VI + x2 e-2x

(b) y = (x + I)( )2(x + 3)3(x + 4)4

(c)
e
-x sin 2x

y =
x2 sin 3x cos 4x

id) xy = yx

(e) log x2 + y2 + arctan = 10.

Ans
x

y + x

lO. Find the local maximum and minimum points of each of

the following functions, and draw their graphs:

(a) y = xex

(b) y = x2e-x

(c) y = 10 e
-x2/2

e
(d) y

x + e
-x

x -x
e - e

(e) y = x log x

(f )
log x

x

II. Evaluate the following integrals:

( )f-5x dx

609 eti 9
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(b)

(c)

( d )

(e)

( f )

(g)

x2ex
3

dx

fx dx
- I

ft2 + I dt

ft dt

e x

ex + I

Jr, +
dxdx

(h) dx

f2 + 3e 4x

ez(i) J 2z dz
I + e

( j) fcos x
sin x dx

(k) /tan x dx

(m)

(n)

2du

eu

5

xe-x2 dx

610
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( o )
r2 dx

Jo x + r

(p) I ) dx
f° x2 + 1 x2 + I

( r)

( s )

p2 dx
JO x - I

jr:tan x dx

12. Show from a graph that

x log x
log t dt = dro (x - e

t
) u4

and evaluate the latter integre! th.reby getting ,n-

definite integral of log x.

13. It is convenient to introduce some c'. binations 17.'4

the exponential function as spcial functions:

x -x
sinh x

e e

2

cosh x =
2

e
x + e-x

tanh x =
e
x + e-x

e
x

- e-x

coth x
ex + e-x

e
x - e

-x

611
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(a) Find the derivatives of these four hyperbolic

functions.

(b) Find the Indefinite integrals of these four functic

[Hint. tanh x and coth x are of the form

fl(x)/f(x).]

(c) Prove the identities:

(1) cosh2 x - sinh2 x = 1

(ii) sinh (x + y) = sinh x cosh y 4 cosh x sinh y

(iii) :osh2 x + sinh2 x = cosh 2x.

14. Use Taylor's Theorem to compute e2 and e
-2

to 3

decimal place accuracy (i.e., with error less than

.0005). Is their product I, as it should be?

15. (a) Show that

D
n (log(I + x), = (n 1)!(I + x)-n(-1)n-1.

(b) Use Taylor's Theorem, with a = C, to compute

log 1.2 to four decimal places.

(c) Make a flow chart for a computer program to

compute log (I + x) with error at most c for

0 < x < .5.

(d) Write the program and make a table of log(x + I) 1

x = 0(.01).5 to 5D, (i.e. from x = 0 to .5, at

intervals of .01, with error at most 5 x 10-6).

612
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9
16. (a) -log 2 + 2 log 3 - lo,n 5 = log TT = log (I - .1),

24
3 log 2 + log 3 - 2 log 5 = log 75 = log (I - .04),

27
3 log 3 - 2 log 5 = log 75- = log Cl + .08).

Compute the logs on the right hand side to 4D by

hand and solve the three simultaneous equations for

log 2, log 3, and log 5.

(b) Use 49/50, 99/100, and 1001/1000 to get log 7,

log II, and log 13.

This method has been used to get the logs of

prime numbers, and from them the logs of other

integers, to very many (e.g., 50) decimal places.

17. Given the curve C:

y = Ae-ht sin(wt + 0).

(a) Show that C is tangent to one of

y = Ae-ht, y = -Ae-ht,

at any critical point of

y = sin(wt t e).

(b) Find the local maximum anc minimum points of C.

In particular, find them to two decimal places

for the extrema in Figure 1-5.

Ans. t = w
-1 (-0 + arctan(w/h) + nn), r, an integer.

613 6
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(c) If h is very small compared with w, (this condition

is often written h << to) a critical point tc

of C is close to a critical point is of y = sin(wt

Show that to a first approximation tc - t5 = -h/w2.

[Hint. In the answer to (b) change arctan

(w/h) to 7/2 - arctan (h/w), (Justify this) and

get the linear approximation to t as a function

of z, where z = h/w.]

(d) Show that y satisfies the relation

y" + 2hy' + (h2 + w2)y = 0.

66--
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2. Differential Equations.

Example 1. Many savings accounts today pay 5%, compounded

quarterly. This means that one's balance is increased by

1.25% every three months. At the end of a year the balance

is (1.0125)
4 = 1.05095 times its original value; the

equivalent, therefore, of 5.095% compounded once a year. A

few banks try to impress the public by compounding

monthly; this increases the equivalent yearly compounding

rate only to 5.116%. Probably no bank has advertized con-

tinuous compounding, bit we can easily see how it would work.

Suppose B(t) is our balance at 7.-,y time t, and that t

and t + At are two consecutive times of compounding. Then

or

B(t + At) - B(t) = B(t)(.05)At,

B(t + Gt) - B(t) .05 B(t).
At

Taking the limit as At -4- 0 gives

(I) B'(t) = .05 B(t).

From Problem 6 of Section 1 we see that B(t) = Ae05t

satisfies this 6ny constant A. But are there

615 66 t..;
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perhaps other solutions? To answer this we write (I) in the

form

(2)
1trrcr 0'(t) = .05.

This, of course, cannot be done if B(t) = 0, so we must'

restrict the range of B(t) either to (0,03) or (-03,0). For

the present we use 0 < B(t) < 00. (This is the only one that

makes sense in our interest problem.) Now the left-hand

side of (2) is the derivative of log B(t), and since the

right-hand side is the derivative of.05t, the basic property

of anti-derivatives tells us that

log B(t-) = .05t + c.

This can b, written in exponential form;

B(t) = e* 05t + c

= e
c
e
.05t

.05t
=

where A = ec is a positive cons.;.ant. Thus we get nothing

new from this.

For the case -03 < B(t) < 0 we use the fact that

B'Dxlog(-B) = IT- to end up with the same result except that in

this case A = -e c is negative. Thus B(t) = Ae .05t includes

667
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all solutions for positive B and for negative B; and also the

solution B(t) = 0 for all t, obtained by putting A = 0.

It is now easy to finish our interest problem. For we

have

B(0) = Ae° = A

B(1) = Ae'
05

= 1.0512927 A,

corresponding to a yearly compounded interest rate of about 5-0.

Example earth's population is increasing 2% per year."

This says

AP = P(t + At) - P(t) = .02P(t)

if At = I year. We cannot assume that if At = I month we

have

.2AP = -P(t),
12

for, as we saw in Example I, this would lead to an annual

increase greater than 2%. We ask ourselves the question :

"What rate of continuous increase will give an annual increase

of 2%?

If the rate of continuous increase is k then, as in

Example I, we are led to the equation
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Pl(t) = kP(t),

with the general solution

(3) P(t) = Aekt.

Our opening quotation says that

and so

P(1) = 1.02 P(0),

Ae
k

= I.02A

e
k

= 1.02

k = log 1.02 = .01980263 = 1.98%

We must be cautious in applying formulas like (3).

Suppose we ask for the present-day increase in population

in one-tenth of a second. Since

P(0) = A = 3.4 x 10
9

, and t = .1 x (3.1 x 10
7

)

-I = 3.1 x

years, we get using the values of A, k, t and P(0) given ab

P(t) P(0) = 3.4 x 10
9 Cexp(.0198 x 3.1 x 10

-9
) I]

= .21 people

Of course this is nonsense. In fact, in the strict sense

there if no such thing as "continuous increases" o a quant

whose values are integers. Our model of population growth

is therefore, like all models an approximation that is

-;
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applicable in suitable circumstances;In this case, only

when we are dealing with large numbers of people.

Equations like (I) are often more easily handled in

terms of differentials. Using simply B for B(t), we can

write (I) !r1 the form

dB
= .05 B,

dt

or, using differentials,

dB = .05 Bdt.

The solution then proceeds as follows:

(4) 1;.dB = .05 dt,

and, taking anti-differentials,

log B = .05t + c, if B > 0,

log (-El) = .05t + c, if B < 0,

as before.

The use of differentials is particularly convenient

in some complicated cases since they enable us tr treat

the two sides of the equation as separate problems in anti-

differentials, or in indefinite integration. For example,

619
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(5)

becomes

y2 4.

xy

(6) = Idx,
Y2 I

We integrate the left-hand side with the substitution

u = y2 + I, giving

f--Y-dy = f = log u = log(y2 + 1).

Y2 + I

Hence, assuming x > 0,

.log(y2 + I) = log x + c,

log(y
2

+ I) = 2 log x + 2c

= log x
2 + 2c

y
2

+ 1 = x 2 etc

= Ax
2

,

y = ± Ax2 - I .

Note that since y
2

+ I > 0 for all y we need not worr

about log(y
2 + I). In the case x < 0, log x is replaced t

log(-x) In the first two lines of the solution but the res

is unchanged.

620
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Because of this interpretation and technique involving

differentials, equations like (I), (4), (5) and (6) were

called differential equations. The name has now been ex-

tended to any equation involving a function and one or more

of its derivatives, even though in many cases it would be

extremely awkward, to say the least, to express it in terms

of differentials.

The technique we have been using for these "first order"

equatl,, s (i.e., involving only the independent variable,

the Jn, and its first derivative) is called "separation

of v.c..,,ales" for the obvious reason. Not all first order

equations can be handled this way; for example, the simple

ea :i;on y' = x + y. In a later chapter we shall make a

mere thorough study of first order equations.

You have probably noti:sd that each of our solutions

involved an arbitrary constant, C or A. This will evidently

be the case whenever we use the separation of variables

technique, since it involves an anti-differentiation. In

most applied problems this constant is determined by some

"side condition", usually the requirement that the function

have a sp-,cified value of the independent variable

for a given value of the dependent variable; in symbols,

we require that y(x0) = yo where xo and yo are

given numbers. Such d side condition

621 6 7



www.manaraa.com



www.manaraa.com

will usually settle any other indeterminacy that may arise

in the solution of the differe:,tial equation. Thus the

condition y(2) = -3 on Equation (5) gives the solution

/77 -
Y --2

Example 3. A body moving with velocity v0 enters a resistir

medium which decelerates the body at a rate proportional to

v
a

, where v = v(t) is the velocity at time t and a is a

positive constant. When and where does the body stop?

We are given

dv a
- - v

where k is a positive constant. (It is usually preferable

to adjust signs, if possible, so that physical quantities

are positive). Separating variables gives

v
a dv = -kdt

I-a
C - kt.- a

Let us get rid of the C at once by putting in the initial

condition: v = v
0

when t = O.

6 7
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=
0T- 7

If

But

and

Evidently

a < I then

if a > I

no value

l -a
=

the behavior depends

v = 0

we have

a-1
=

of t makes v = O.

1 -a

when

- (I

on

+

can

- a)kt.

the sign of I

I -a
v0

t

- a.

0 -

(a - 1)kt

only say

k

-I

that

a-1
0

We

-0- 0 as t co.

So much for the time. To Investigate the distance

traversed we have two choices. Since v =
ds we can integrate

dt to get the change in s. Considering the complexity of

as a function of t this is not appealing. The other

choice is to go back to the differential equation and replace

7Tdv dvby v 0 (See Problem 2 in Section 7-6.) This gives us
as

v
dv = -kva,
ds

v
I-a dv = -k ds,

v
2-a

= C - ks.

623
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Determining C from v(0) = v0, as before, we get

v
2-a

V
0

2-a - (2 - a)ks.=

Here a = 2 is the dividing line. If a < 2 the velocity

becomes zero if and only if

s =
' 2

2-a
v0

If a > 2 the body moves arbitrarily far into the resisting

medium.

The most interesting case is I < a < 2. The body never

stops but it never ge;s as far as s =
v02 a - a). It is

left to the reader (Problem 13) to show that it gets

arbitrarily close to this point. The two critical cases,

a = I
and a = 2, are also left to the reader.

Since is the slope

of the curve y = f(x) at

the point (x,y), a property

of a curve involving the

tangent line can lead to

a differential equation.

Figure 2 -I shows some of

the geometric quantities

that might be involved

.'7; 624
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In such relations. Note that

OM = x, MP = y, tan e = = yl, AM = yiy1.

Example 4. A curve passing through the point (1,1) has the

property that the tangent line at any point bisects the

segment between the origin and the foot of the perpendicular

to the x-axis from that point. What is its equation?

At first we ignore the point (1,1); this is the side

condition that will eventually determine the constant.

Referring to Figure 2 -I, the condition given is that OA = AM,

or OM = 2AM, or x = 2y /y', or, finally, y' = 2y/x. We

solve this in the successive steps:

dY 2dx
x

(7) log y = 2 log x + c = log x2 + c

(8) y = ecx2 = Ax2.

In (7) we use log y and log x as the integrals since both

y and x are positive at our given point (1,1). Putting this

point in (8) gives, finally, A = I, and so y = x2 is our

desired curve.
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PROBLEMS

I. Solve the given differential equation, subject to the

given initial condition.

ds
(a) = 32t + 5 s = 100 when t = 0

dt

dr sine ,
when 0 = 21-(b) r2 r = I

de 4

(c) yy' = x+ I y= 3 when x= 0

(d) c-11 = 1.

dx y

(e) eY-x yl + I = 0

(f)
dz

=
dt

2. Find the general solution of

dx
= ay + b,

where a and b are constants.

Y = 5 when x = 2/

y = 2 when x = 2

z = 100 when t = 9

[Hint: There are two cases, depending on the value of a.]
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3. (a) Using the data from Example 2, what was the population

of the earth In 895 AD?

(b) What will It be in 3569 AD? If the average mass of

a person Is 120 pounds compare the total mass of

people with that of the earth (= 1.2 x 1025 lbs).

4. The population of the United States was approximately

131,000,000 in 1940 and 179,000,000 in 1960. Assuming

that the rate of increase Is proportional to the

population, in what year will the population be

250,000,000? When will it reach 300,000,000?

5. Radioactive elements decay at a rate proportional

to the amount present. The rate of decay is usually

measured by the "half-life", that is, the time

required for an amount of the element to decay to half

_its present value.

(a) Strontium 90, one of today's hazards,has a

half-life of 5 years. Of an initial pound of

90Sr how much will remain after t years?

(b) Of this initial pound how much will be left In

500 years? Be careful!

6. In Figure 2 -I, if the triangle AMP has constant area

6, what is the equation of the curve if it goes

through the point (2,2)? Sketch the curve.
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6

7. In Figure 2 -I, the line through P perpendicular to the

tangent line is called the normal line. If the

normal line meets the x-axis at N, the distance MN is

called the subnormal. Find the general equation of a

curve whose subnormal is constant.

8. The setting sun casts the

little moron's shadow on

a long wall. The moron

wants to get ahead of his

shadow, so he walks toward

the wall, always heading for

a point three feet ahead of his shadow. What is his path?

9. A spherical raindrop is losing water by evaporation.

Assuming that the rate of los of water is proportional

to the surface area find an expression for the radius

as a function of time.

10. A 100-gallon tank is full of a solution of 2 pounds of

salt per gallon of water. To flush the tank, fresh water

is run in at 5 gal/min and solution is run out at

the same rate. The fluid in the tank is stirred

constantly, so that the salt concentration may be regarded

as uniform throughout the tank at any moment. What is

628 6i9
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the salt concentration at the end of one hour? How

long would it take to get the concentration down to

.01 lb/gal? [Hint. If s is the number of pounds of

ds
salt in the tank, what is uT?..1

11. When the salt concentration in the tank In Problem 10

has been lowered to .01 lb/gal the process is

reversed; brine containing 2 lb/gal is pumped in at

5 gal/min and the mixture runs out at the same rate.

How long will it take for the concentration in the

tank to reach 1.99 lb/ga1?

12. (a) When water spurts from an

orifice in an open tank

its velocity is proportional

to the square root of the

distance from the orifice

to the surface of the water.

If it takes one hour for

half the water to run out

of an upright cylindrical

tank how long will it take for .9 of the water to

run out? For all of it to run out?

Ans. 2.335 hours; 3.414 hours.

...A 629
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(b) Answer the second question

for an inverted conical tank.

Ans. 2.279 hours.

13. (a) In example 3, show that for

I < a < 2,

v
2-as 7 as 03.

(b) Investigate the cases a = I and a = 2.

14. The differential equation

3y2/3
-611-k

has four solutions on (-m, m) that satisfy f(0) = 0.

Can you find them?

630

68



www.manaraa.com

Chapter 10

TWO APPLICATIONS OF DERIVATIVES

I. Convex Sets and Functions.

A set of points in the plane

is said to be convex provided that

you can travel from any point of

the set to any other point of the

set in a straight line without

leaving the set, More precisely:

If S is such a set of points that

for any two points P,0 of S, the

segment MT is also contained in S,

then we say that S is convex.

Figure 1-1

We show some examples of convex and non-convex sets

in Figure ;-7
Convex

Not Convex

Figure 1-2

631
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One of the basic propertles of convex sets Is that

the Intersection of two convex sets Is In turn convex. To

see this, suppose that P and Q

are points in the intersection

SnT of the convex sets S and T,

(Figure I-3(a)). That P and 0

are in SnT means that these

points are in S and also in T.

Since they are both in S then

the segment POcS and since they

are both in T then the segment

PACT. PO, being contained in

both S and T is contained in

their intersection. [ Note that

the union of two convex sets is not

necessarily convex as illus-

trated in the previous figure.].

By the same reasoning we

can see in more generality that

the intersection of any number

of convex sets is convex. This

is illustrated in Figure 1-3(b).

where the intersection RnSnT is

shown in black.

632
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Of the many other proper-

ties of convex sets we shall

mention (but not prove) only

one. First a definition: If

P is a point on the boundary

of a convex set S, a line

through P is called a support

of S if S lies entirely on one

side of the line. Figure 1-4

shows some supports of .S at

various boundary points P.

Theorem I. A convex set has

at !east one support through

every boundary point.

This seems obvious, but

like many obvious-looking

geometric theorems its proof

is complicated. Since we do

not use Theorem I In later

'roofs we shall not attempt

to give a proof of it in this

general form.

(a)

ftot convex

(b)

Figure 1-5
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A function is said to be convex

provided that for any two points of

its graph the arc of the graph Join-

ing these two points lies below the

line segment (or chord) Joining the

points (Figure 1-5). This is

equivalent to saying that the set

of points lying above the graph is

convex (Figure 1-6). [Here we use

the words above and below in the

sense of including the possibility

of points on the curve or line.

Hence by "the set of points above

the graph of f" we mean the set of

(x,y) for which y > .f(x). We will

use the phrases "strictly above"

or "strictly below" when we wish

to exclude the P ossibility of a

point being on the curve.]

A function is said to be

"concave" if the graph lies above

the chord (i.e., the set of points

below the graph is convex.) The

634
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negative of a concave function

is convex; since the properties

of concave functions mirror

those of convex functions, our

study here will largely be con-

fined to convex functions.

We speak of a function as

convex over an interval if the

function is convex when its

domain is restricted to that

interval. (Figure 1-8). Thus

a function may be convex over -ZT[Al/ .141 A/1

Figure 1-8

some intervals and concave over
f(x) =sin x

other intervals. (Figure 1-9). convex concave

When we say "the domain of convex-

ity of a function", or some simi-

lar phrase, we mean an

interval over which the function is convex. The function

may be defined over a larger domain and may even be convex

over some other intervals but this does not concern us.

ITT

Figure 1-9

To pro things about convex functions we shall use

some properties of chords of their graphs. Let a < xi < x
2

686
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be in the domain of the convex

function f, and let A,PI,P2 be

the corresponding points on the

graph of f. Let ml and m2 be

the slopes of API and AP2. Then

ml m2.

Proof. Let ():(x
II

y
I

) be the

point on the line AP2 with

abscissa xl. Then, by the con-

vexity of f, f(x1) < yl. Hence

m
f(x

I

) - f(a) y
I

- f(a)

x
1

- a x - a
m
2

Figure 1-10

This property can be expressed by saying that for fixed

a and variable x the slope of the line Joining (a,f(a)) and

(x,f(x)) is an increasing function of x for x > a. It is

not hard to generalize the property to the case x a but

we shall not need this. One can also prove the converse;

if f is a curve for which this property holds for every a

in the domain then f is convex.

We are now in a position to prove a special case of

Theorem I.

.-, 636 687
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Theorem 2. If f is convex and if f'(a) exists then the

tangent line at a is a support of f.

Proof. We wish to show that for any x / a, the point

(x,f(x)) is above the tangent line. Since the equation of

the tangent line is

y = f(a) + (x - a)fl(a)

this amounts to proving that

f(x) > f(a) + (x - a)f'(a).

Consider first the case x > a. Letx=xI' x2' x 3"' be e

decreasing sequence with limit a. Then the slopes

m
f(x

n
) - f(a'?

n xn - a

also form a decreasing se-

quence, by the property we

just proved. Since

tim m
n
= f'(a), we therefore

n÷cc,

have f'(a) < m
n

for any

given m
n

; in particular for

mi. Since xl = x this gives

f'(a) <
f(x) - f(a)

x - a

637 6 88
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from which

f(x) > f(a) + (x - a)f'(a),

as desired.

For the case x < a the easiest procedure is Just to

replace a by -a and x by -x. The function g defined. by

g(x) = f(-x) is convex, being Just the reflection of f in

the y-axis, and the above argument holds for -x and the

tangent at -a. Since vertical distances are unchanged in

the reflection this gives us what we want.

We come finally to the more useful facts concerning

convex functions.

Theorem 3. If f is convex and differentiable then f' is

an increasing function.

Proof. Let x
1

< x
2'

Since

the tangent at x
I

is a support

we have,

f(x
2

) > f(x
I

) + (x
2

- x
I

)fl(x
1

)

Since the tangent at x 2
is a

support,

f(x1) > f(x
2

) + (x
1

- x
2
)fl(x

2
)

638 689
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Since x
2

- x
1

> 0 the first inequality gives

ft(x ) <
I

and the second,

f(x
2

) - f(x
I

)

x2 -

f(x
2

) - f(x
I

)

fl(x ) >
2 x

2
- x

I

$

Hence ft(x
I

<) ft(x
2 '

) as was to be proved.

Corollary I. If f is convex and if f"(a) exists then

f"(a) > O.

Proof. For f"(a) to be defined ft(x) must exist in some

neighborhood of a, and by Theorem .3, f' is increasing.

Hence its derivative f"(a) must be > O.

One nice thing about these last two results is that

their converses are true.

Theorem 4. If f' is increasing in the domain of f then f

is convex.

Proof. Let P
1

and P
2
be any two points on the graph of f

and Q any point on the segment P
I

P
2*

Let A be tiv -. point

of the graph with the same abscissa, a, as Q. \e have to

show that Q is above A. By the Mean Value Theorem there

639690
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is a value E strictly between a

and xi, the abscissa of P
l'

such

that

f(a) - f(x
I

)

fl(E) a - x
I

Since E < a and flis increasing

we have

f/(E) < f'(a),

and so

or

f(a) - f(x1)
f'(a) >

xl

f(x
1

> f(a) + (x
1

- a)f'(a).
Figure 1-13

That Is P
1

is above the tangent lino at A. In the same way

we prove that P2 is above the tangent line at A. Hence Q,

being on the segment P1P2 must also be above this tangent

line; which means, for Q, above A.

Corollary 2. If f"(x) _,0 in the domain of f then f is convex.

Proof. If f"(x) > 0 for all x then f' is an increasing function

for all x.
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It is convenient to combine Corrollaries I and 2 Into

a si.igle statement, which Is important enough to be listed

as a separate theorem.

Theorem 5. If f has a second derivative throughout its

domain then f is convex if and only if this second derivative

is always > 0.

f49
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PROBLEMS

I. Which of these functions is convex or concave over the

given interval? Justify your answer.

(a) y = e-x, (-00,00)

(b) y = log x, (0,03)

(c) y = x e-x, (-.0,03)

(d) y = 2 - 3x, [ -2,2]

(e) y = Ix - 11, [0,21

(f) y = /7, [0,10]

(g) y = lx + lx + 11, [ -2,2]

(h) y = x2 2, [-2,2]

(I) y = (x2 - 21, [ -2,2]

2. Suppose f and g are each convex on an Interval [e,b]. For

each of the following, either prove the statement or give

an example contradicting It. [Assume f" and g" exist.]

(a) h(x) = f(x) + g(x) is convex.

(b) h(x) = f(x) - g(x) is convex.

(c) h(x) = f(x)g(x) is convex.
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3. Suppose f is convex on [a,b] and g is linear, i.e.

g(x) = cx + d.

(a) Is f(g(x)) necessarily convex?

(b) Is g(f(x)) necessarily convex?

4. (a) Prove that ex > x + I for any x. [Hint: Consider

the tangent to y = ex at (0,1).3

(b) Prove that log x c x - I for any x > 0.

5. If a is a point in the domain of f at which f'(a) exists

and such that f is convex on one side of a and concave on

the other, then the point (a,f(a)) of the graph of f is

called a point of inflection, or a flex, of the graph.

(a) Prove that if (a,f(a)) is a flex and if f"(a) exists

then f"(a) = 0. Is the converse true?

(b) Prove that the tangent line crosses the curve at a

flex.

6. Find the points of inflection of the following curves and

draw the curves.

(a) y = x3 + 3x2

(b) y = X4

(c) y =

- 3x3 + 4

+ X2
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( d ) y =
1 + x2

(e) y = x e
-X

(f) y = 0/T-7-77

(g) y = x sin x) [0,7/2]

(h) y = x2 - 2 + 2 cos x, [-Tr/2,7112].

7. Show that if a solution of the differential enuation

dy y2
dx

has any points of inflectic,n they must lie on the

ILLcurve x= y2 + [Flint: When is = 0 ?]

dx2
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2. Convex Functions and Integration.

Back in Chapter 3, working with monotone functions, we

were able to construct algorithms for approximating integrals

by means of the trapezoid rule and to find an upper bound

for the error in our

approximation. The error

estimate was based on the

following principle: If

A represents the true

value of the integral,

and L and U are upper and

lower sums for a certain

partition, then L < A < U.

Moreover the trapezoidal

approximation T for the

same partition satisfies T = (L + U)12, and so we see geomet-

rically that since A lies between L and U,

1 5/4 3/2 7/4 2,

Figure 2-1

U L.

I T U

Figure 2-2

A must He within a distance U , of T. Thus the error T-A

satisfies

U - LIT -AI < .

645
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In Figure 2-I we have graphed f(x) = x3 over the

interval [1,2] with 4 partitions. Here the shaded area

represents U - L so that our bound for the error is half

the shaded area. The actual error, representei by the sum

of the four little areas between the chords and the curve,

is barely visible on this graph.

It is clear that our error bounds were many times too

large and this effect is even more pronounced when the number

of partitions is large. In this section we will see for

convex (or concave) functions how to approximate the integral

with very much smaller bounds on the error.

It will be recalled that in

Chapter 3 we discussed a second

method of approximating areas in

which we partitioned the inter-

val, chose according to some rule

a point in the k
th subinterval

for k = I, 2, ...,n and formed

the sum

n

S = /2 f(Ek)(xk xk-1).
1<=1

This is illustrated in Figure 2-3 Figure 2-3

where we have used the same
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function and the same partition as in Figure 2-1, the shaded

area representing the value of the approximating sum S with

E1,2,E3,E4 chosen as indicated in the figure.

It would be reasonably natural to choose the points &k

at the midpoints of the subintervals as shown in Figure 2-4(a).

( b )

Figure 2-4

CLYCCI.S
t he

Sarme

We find that this choice of the midpoint is quite special in

that if we pivot the top edge of the rectangle in Figure 2-4(a)

about its midpoint as in Figure 2 -4(b) the area of the result-

ing trapezoid is the same as the area of the original rectangle.

(The area "gained" on the right is equal to the area "lost" on

the left.) In particular we can rotate this top edge so as to

be tangent to the graph as seen in Figure 2-4(c). And now, if

the function is convex, as depicted in Figure 2-4(c), the

shaded area lies entirely below the curve.

641
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And, on the other hand, the approximation given by the

trapezoid rule is represented by an area which entirely con-

tains the area under the curve as in Figure 2-5.

Xic-t fic Xis

Figure 2-5

Since these observations apply for each subinterval in

the partition, we find for convex functions the following In-

equalities between the integral, A, the midpoint approximating

sum, M, and the trapezoidal approximating sum, T:

n n f(xk) + f(x
k-1

)

M = 2: f(- ,,)(xk - < A < 2:
2

(x
k

- x
k-1

) = T,
k=1 k=1

x
k
+ x

k-1Here g
k 2

This is illustrated in Figure 2-6 where the areas repre-

sening M, A, and T are successively shaded. Note that nowhere

in our argument was it required that f should be monotone.
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(b)

Figure
2-6

( c)
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for the Integral, A, we obtain the error bound
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for contrast,
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half
tk
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that
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101-

er
ror estimate
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For concave functions the same analysis goes through

with the inequalities reversed:

T < A < M.

The error estimate, written in the form,

IT + M
- A 1 IT 2- M

will hold for concave as well as convex functions.

Now we wish to present an algorithm which computes in-

tegrals of convex and concave functions making use of these

improved error estimates. We give the flow chart along with

a partial explanation, leaving some of the details for you

to work out in the following problem set.

Each time through the loop of Boxes 3 through 10 this

algorithm successively halves the subinterval widths, w, and

doubles the COUNT of the number of intervals (both in Box 8)

and outputs (Box 7) the TRAPezoid and MiDpoint rule approxi-

mations of the integral. Boxes 3,4, and 5 sum up the

functional values going into the midpoint rule calculation

and the first line in Box 6 computes the midpoint approxima-

tion by multiplying this sum by the common width. The second

assignment in Box 6 calculates the error estimate derived

above.

70
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Flow Chart

START

(a, b 6, MAX

COUNT F- -1
14/- 4
TRAP 4-- (f (a)+ kb)) x tria

-b-a

* 3
I SUMS c 1

1

RE--K+IIll I k >COUNT

F 5
SUM(_._ SUM f( a I*,iir)

4

FEa, <---W-x SUM
RR 4-- ITRAP-MIDI /2

7
COUNT, TRAP, MID ERR

wyz

TRAP 4----(TRAP+ MID) /2.
COUNT ---couNTx2

9
CCOUNT > MAX )

.49F.ctfm 110

T
COUNT ,TRAP 1

Figure 2-8
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The v- a I ue TRAP is initialized in Box 2 with the

appropriate value before the interval [a,b] has been sub-

divided at all. We leave it to you to work out how it is

that the later values assigned to TRAP in Box 8 turn out to

be correct.

The test in Box 9 is for roundoff effects. If COUNT is

going to,run into the high thousands or the millions one must

worry about the accumulation of the errors that arise in the

additions and the function evaluations in Box 5. The cumula-

tive effect of these errors depends upon the kind of arithme-

tic used in the machine (fixed point or floating point - see

Chapter I), upon the behavior of the function f and the

method of evaluating it, and possibly other factors. Knowing

all these one can usually estimate an upper bound, MAX, to

the number of terms that can be used in the summation without

the total roundoff error exceeding E. If ERR gets below E

before COUNT reaches MAX then the output is in error by at

most 2E. If COUNT exceeds MAX first then the roundoff error

has possibly reached E, and the possible error in the answer

at this point is ERR + E for the current value of ERR.

652
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PROBLEMS

I. (a) For the function f(x) = 1/x and the Input

a = 1, b = 2, c = 10
-8

, MAX = 4,

what should be the total output of the flow chart

of Figure 2 8?

(b) Carry through in detail all the steps of the flow

chart for this case and see if you get what you

should.

2. Write a program based on the flow chart of Figure 2-8.

Check it with the case of Problem I. Use it to approxi-

mate the following integrals.

(a) fo

5

dx, E = 2x10-6

1

3. In Figure 2-5 let m = h = 7(xk - xk_i), so that

x
k-1

= m - h, x
k

= m + h.

(a) Use Taylor's Theorem to approximate f(x) to terms of

fourth degree, with a = m, b = m + t, to get

653
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(1) f(m + t) = f(m) + fl(m)t 4u(m)t2 3.1

(4)774 (m).0.

(b) The contribution of this one strip to the midpoint

sum is AM = 2h f(m). Show that the contribution to

the trapezoidal sum is

AT = h[f(m + h) + f(m - h)]

= 2h f(m) + h3f"(m) + 1-7115f(4)(m).

(c) Show that the approximation to the area of the strip

obtained by integrating (I) is

AA = f
h
f(m + t)dt

-

I

= 2h f(m) + 741
3
f"(m) + 41415f(4)(m).

(d) Show that

AA = 4,AT + 2wAM
5

is good to terms of fourth degree in h, whereas

AA = T(AT + AM)

is good only to terms of second degree.

7 0
4
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Using the subdivision of Figure 2-7 for the functitm

f(x)

four

= x-3, tabulated here, compute

decimal places:

the following to

(a) The exact area under the x-3

curve, A; 1
1.00000

9/8 .70233

5/4 .51200

(b) The trapezoidal approxi- 11/8 .38467
3/2 .29630

mation, T; 13/8 .23305

7/4 .18659

15/8 .15170

(c) The midpoint approximation,

M;

2 .12500

(d) A
I

=
1 (T + M);

(e)
1 2

A
2

= 7 + 7 M.

Discuss the advantages and disadvantages of Al and A2
b

as an approximation to

5. Can you think of any way of applying the results of

this section to functions which are not convex or ocn
3

cave? For example, could they be applied to .4 xe-xdX?
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3. Newton's Method.

Back in Chapter 2 we encountered the "bisection algorithm"

for the approximation of zeros of a function. We are going

to develop in this section another algorithm, "Newton's method"

for carrying out this task.

Newton's method is not so generally applicable as the

bisection method. The bisection method required only that

the function be continuous and assume opposite signs at the

ends of our given interval. Newton's method requires both these

conditions and as well that the functiOn be strictly monotone

and either convex or concave. Such conditions may be difficult

to verify, even though they are generally satisfied in a

sufficiently small neighborhood of the root. Weighed against

these considerable disadvantages is the fantastically rapid

convergence of Newton's Method when the favorable conditions

obtain.

There are four cases to be considered,as shown in Figure 3 -I.

(a) (b) (c)

Figure 3 -I

656
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We w1.11 confine our attention to Case I (Figure 1(a))

and observe that the other cases are handled similarly.

Suppose then that f is convex, increasing and differen-

tiable in [a,b] with f(a) < 0 < f(b). Note that these con-

ditions imply that f will assume the value 0 at Just one

point of [a,b] which we call r.

It will be convenient to rename b as x
0'

Draw the

tangent to the graph of f at the point (x0, f(x0)) and note,

since it is a line of

support, that this tangent

line wilt intersect the

x-axis at a point, x1, to

the right of r as in

Figure 3-2.

Since the slope of Figure 3-2

boce

this tangent line is fl(x0)
f(x )

and can also be representedlas seen in Figure 3-2,as
0

X X
0 I

we can quickly solve for xi:

f(x
0

)

x - x
f' (x0)

o

f ( x )

0

f(x
0

)

x = xo -

651
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Now we can iterate this process using xl in place of x0.

Figure 3-3

And so on.

As seen in Figure 3-3, these points seem to converge to

r quite rapidly. Before considering how rapidly, let us see

how to flow chart this process. We won't need successive

names for the xo, xl, x2, . We will Just create one

variable XO which we allow to

take on different values as

seen in the flow chart frag-

ment in Figure 3-4. (X0)
X 0 4 X 0

f' (X0)

Of course we need to in-

clude a test for branching out

of this loop to a stop. And

that is where the error

658
709
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analysis comes In. Let us look first at the degree of

reduction of the error after the first step. That is, let

us compare

x
1

- r with x0 - r.

Let us now assume that the second derivative of f is

bounded by a number M on the interval [a,b] and also that

f'(a) > 0. Consider now Figure 3-5 in which the tangent

line at (x0,f(x0)) has been extended somewhat. The distance D

is the deviation of the

function f from the tangent

line and so according to

the Extended Mean Value

Theorem, 4;0

(2) D < (r - x0)2.

And since the slope of the

tangent line is f/(x0) we

see that

x r
= f/(x )

0

Xl

Figure 3-5

Using this together with (2) yields

( x - r) f' (x0) < - (x0 - r)2,

659 719
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or

x
1 r 2fr(x0 ).(-0

- r)2.

And since f' is an increasing function

so that

Letting

f'(a) < fl(x )
0 '

x r <
1 2f'(a)(x

0
- r)2.

Q
2f'(a)

this is most usefully written as

2r

(3)

xi - r xo

( 0 )

Similarly, letting xl play the role of x0,

x2 - r x - r 2 -

and in general

(4)

2n
xn - r x0 -

To get an idea of what this means take a rather bad case,

when f'(a) is small but f'(x) increases rapidly, so that M is

660 71
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large. Suppose that n = 1/10. For formula (4) to insure

convergence

(x0 - r) <

we get:

we

Q.

would have to have

Suppose we take x
0

(x0 - r) /fl

r = .05.

< I,

Then

i.e.,

from (4)

x
1

x
2

x
3

x
4

x5

x
6

-

-

-

-

-

-

r

r

r

r

r

r

< (.5)2/10 = 2.5 x

< (.5)4/10 = 6.2 x

< (.5)8/10 = 3.9 x

< (.5)16/10 1.5

< (.5)32/10 = 2.3

< (.5)64/10 = 5.4

10-2

10-3

10-4

x 10-6

x 10-11

x
10-21

One thus gets some idea of the fantastic convergence.

After only six iterations of the process we have an answer

correct to 20 decimal places.

The above computation assumes exact arithmetic at each

stage. On a computer accurate to, say, 15 places, the last

step would certainly not hold, since the best we could ever

hope for would be x
6

- r < 5 x 10-16. The earlier steps, how--

ever, would still be valid, the computation being too short

for the accumulated roundoff errors to affect x
5

significantly.

71,
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Although the inequality

(4) tells us the rate at which

Newton's Method converges it

does not tell us the actual

accuracy at any step, since we

don't know xo
- r to start

with. However, we can very

easily get a usable error

bound from Figure 3-6. Here

we have (again using convexity),

MN < MP or

f/(r)(x
n

- r) < f(x
n
).

Hence

(5) x

f(x
n

) f(x
n

)

r < ry--(77 .7=

since, ft being increasing,

f/(a) < f/(r).

The flow chart is shown in

in Figure 3-7. Its simpli-

city Is striking. The

absolute values are used in

Boxes 2 and 4 to take care

of the other three cases in

Figure 3-1,

662
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PROBLEMS

Garry the following steps for Case
'

IV, f concave

and "Creas ing, Figure
(d).e 3-

Start with x
o

= a, Show that (I) holds unchanged.

Assuming
fl(b) 0, show that (3) and (4) hold if

vs replace each side Of the inagUalitY by its

llue,Wpso
ute value, and let Q = 2f1(b)/m.

show that (5) holds if each side of the inequality

value and fl(a) isis replaced by its abso lute

replace
by ft").

the following carry out10 each lowing c t two step s of Newton's
Z.

method
get a bound for the

accuracy of your
an

(a)
f(X)

x3 X - 1, X = 2.

result.

0

3.

(b) f(x) = cos -
x, xo = I.

(a)

( b)

Shoal
that Newton's Method, applied to the function

f(x) = X2 C oP reduces to the recursion

formula

'(n+ I
= 1(x

n
+ c/x

n
)

this formula to
Use

f
-,l nd /6 accurate

to 3 decimal.

places. Use an error boun d to Prove you have

the
desired accuracy.
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4. (a) In using the above recursion formula show that

one can restrict the range of c to .1 < c < I,

as the square root of any other number can easily

be computed from that of a number in this range.

(b) For a value of c in this range, starting with

x0 = r+ 7, how many iterations of the recursion

formula will insure that the computed approximation

to the square root will be accurate to 15 decimal

places, neglecting roundoff? [Hint. Which

value of c requires the most computation ?]

(c) Is it safe to neglect roundoff in this case?

Discuss the question.

5. How to divide by multiplication! Show that using

Newton's Method on f(x) = c - gives

x1 = x
n
(2 cx

n
).

n46

This method has been used to do division on computers.

6. The flow chart in Figure 3-7 takes no account of roundoff

errors. Where could such errors appear in a way to

invalidate the output of the program? Modify the flow

chart so as to correct this defect.

7. Write a program for the corrected flow chart, check it

with the special cases of Problems 3 and 5, and use it

to solve the following to as much accuracy as your
.

4
computer permits.

664
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X
3

= X +

cos X = X
4 3

x - 3x 4- 7 = 0 (2 roots)

2x r= x2 ( 3 roots)

1165
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4. Evaluation of Limits

In earlier chapters we have had to evaluate certain

limits in order to derive *ntegration and differentiation

formulas. The two basic limits are

,. I

lim I = 0 and lim
sin x

n00 x.0
= I;

from these, others were obtained by using the properties of

limits with respect to sums, products, etc.

We shall soon encounter limits arising from other

processes, and also some extended versions of limits, for

which these simple methods do not suffice to determine the

value. In this section we shall see how some of the properties

of the derivative, arising from the Mean Value Theorem, enable

us to evaluate limits in a great many cases.

The most useful single technique is known as L'Hospital's

(or L'Hopital's) Rule.

Theorem I. In the neighborhood of x = a let f and g

be continuous and differentiable, let f(a) = g(a) = 0, and

let g(x) # 0 for x a. If

then

fv(x)
Trz-77

= L

f(
lim 717-5(x)- = L.
x÷a

666
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The proof of this theorem is somewhat long and is

deferred to the end of the section.

Example I. lim 12121x+1 x2_I

We note that f(x) = log x and g(x) = x2 - I satisfy the

conditions of L'Hospital's Rule, so we consider

lim
f'(x)

lim
I

x+1 5777 x4r7 7

Hence the original limit is 7.

Example 2. lim
x - sin x

x4-0 I - cos x

The conditions are satisfied, so consider

I '

. - cos x
m

x- u s n x

Here again both numerator and denominator are zero at x = 0,

so we apply L'Hospital's Rule once more, to get

lim
sin x
c

x4-0
os x

Here sin 0 = 0 but cos 0 # 0. We cannot apply L'Hospital's

Rule but it is not needed. Since the limit of the denominator

is not zero the limit of the quotient is the quotient of the

limits, and our answer is zero.

7 8
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Example 3. lim
4= 7

x÷1 arccos x '

Since neither arccos x nor (r-=-; are defined for x > I,

Theorem I as stated does not apply here. However, the

conditions are satisfied in a domain of the type:

0 < I - x < 6. A limit defined for this .ind of domaln

is called a left-hand limit and designated by lim Similarly

we have right-hand limits jciz.1.. The proof for L'Hospital's

rule applies equally well to these one-sided limits.

Applying L'Hospital's rule to our problem leads us to

2/T-7-; 17772lim Il: m

X+ I - I "I- 2177-7

lim

Another type of limit to which we can apply L'Hospital's

Rule is lim. The definition of this type of functional limit

is essentially the same as that of the sequential limit.

Definition I. Let f(x) be defined in a domain of the

type: x > R for some R, (such a domain is called a

neighborhood of infinity). Then gM f(x) = L if for

every c > 0 there is an N > R such that If(x) - LI < c

whenever x >

668 71.9
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A definition of lim f(x) is left as an exercise. For limits

as x ±co L'Hospitalls Rule needs a restatement.

Theorem 2. In a neighborhood of infinity let f and g be

continuous and differentiable, and g(x) # 0. Let

1-hen

f(x) = Urn g(x) = 0.

f' (x)F-1-75c - L

x- g L.gx)

1 f

Example 4. jc4m x(ir/2 arctan x). Here x w and

(7r- - arctan x) -4- 0, so we cannot say what the product will do.

To use L'Hospitalls Rule write it as

I4m
ir/2 - arctan x

x w 1-/x

then both numerator and denominator .4- 0. We consider, then,

the limit

TT-7
lim x l

x-im

x2
x4..0 _I 4.. 77-1

since lim i /x2 = 0.

= lim
x+. l + 1/x2

720
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Just as we have given a meaning to the replacement of a

by co in 1(42 f(x) = L, so also we can give a meaning to the

replacement of L by co.

Definition 2. If f(x) is defined in 0 < Ix - al < R,

for some R > 0, then lim
a

f(x) = if for every M there
x9-

is a 6 > 0 such that f(x) > M whenever 0 < Ix - al < 6.

lim f(x) = -co can be defined similarly, as also can
x÷a

li+am
+

f(x) = co, lim f(x) = co, etc. L'Hospitalls Rule holds
x x-e.m

for all of these if L is replaced by co or by

One must be careful with these infinite limits. Since

0, and -c0 are not numbers they cannot be combined with each

other or with numbers by the rules of arithmetic. Even some

very obvious-looking statements are not true; for instance

it is not true that lim 4 = .. What is true is that
x4-0 x

lim
x

= co. and lim
- X x

= -m. and lim 1!..! co= One useful
x4.0+ x4-0 x4.0

property of infinite limits is the following substitute for

Theorem 6 of Section 2-6.

Theorem 3. If lim f(x) = co, and if g(x) has a positive lower

bound then lim f(x)g(x) = m.

The limit can be taken in any one of the types we have

considered.

The proof is lef+ as an exercise.

670
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Example 5. (a) lim x(2 - cos x) = c°, since 2 - cos x > I.
x.+c°

(b) li mm x(I - cos x) does not exist. x(I - cos x)x+

oscillates between zero values, at x = 2Trn, and very large

values, at x = Tr(2n + I), and so cannot have either co or a

number as a limit.

The final form of L'Hospital's Rule handles infinite

limits of f and g. Like Theorem 3 it applies to all the

different types of limits.

Theorem 4. In a suitable neighborhood let f and g be con-

tinuous and differentiable, and let lim Ig(x)1 = co If

then

lim
f'(x)

L
x÷co g

f(x)
lim = L.x±0. 57-77

Here L may be a number, co, or -co

Note that the theorem puts no direct requirement on f.

Of course if f(x) is bounded and lim Ig(x)I = co then

7,,,
.e,

611
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f(x)
5r77 = lim 9"'

f(x) = 0.

without any further ado. But presumably f(x) could oscillate

wildly, say like x(1 - cos x) in Example 5(b). The catch is

that if f(x) behaved too badly so would f'(x), and

lim fl(x)/g/(x) would not exist. It turns out that we are

essentially restricted to the case when lim If(x)I = = also.

Example 6. Ilm x
a log x, a > 0. To bring this under Theorem 4

x÷°+

we write it as

log x

To apply the theorem we take

x"i*m -al-/x-= x-i.0. a

I a
= 0

Example 7. lim x
x

,

x4.0+

If y = xx then log y = x log x. By Example 6, lig+ log y = 0.

and so lim y = e
0

= 1.
x÷0+

Proof of L'Hospital's Rule.

To prove L'Hospital's Rule it is convenient first to

prove a generalization of the Mean Value Theorem.
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Generalized Mean Value Theorem. If f and g are functions

continuous in [a,b] and differentiable in (a,b) then there is

a in (a,b) such that

(f(b) - f(a))g'(E) (g(b) - g(a))f/(0.

Notice that if g(x) = x this equation reduces to the

ordinary MVT. This is what the word "generalized" means; the

original theorem is a special case of this one. The proof is

a modification of the proof of the original MVT.

Proof. The function

h(x) = (f(b) - f(a))(g(x) - g(a)) - (g(b) - g(a))(f(x) - f(a))

has the following properties:

h is continuous in [a,b],

h' exists in (a,b),

h(a) = 0, h(b) = 0.

Hence by Rolle's Theorem, h'(E) = 0 for some in (a,b).

That is,

h'(E) = (f(b) - f(a))g'() - (g(b) - g(a)W(E) = 0,

which proves the theorem.

72
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Like the ordinary

MVT, the GMVT has a geometric

meaning. If

x = f(t), y =

is a parametric representation of

a curve from A: (f(a), g(a)) to

B: (f(b), g(b)), as in Figure 4 -I,

then the GMVT says that at some

point (there may be several) of the curve between A and B the

tangent line is parallel to AB.

Proof of Theorem I. Apply the GMVT with b = x. Since

f(a) = g(a) = 0 we have

(I) f(x)91(E) = g(x)f1(0,

with E between a and x, Since we are assuming that

lim
fl(x)
TrT7T

exists there must be a 61 7 0 such that for 0 < lx - al < 61,

we have g'(x) # 0. Since E Iles between a and x we have

0 < l& - al lx - al 61, and so g'(0 $ 0, We are given

that for some 62 > 0, g(x) # 0 for 0 < lx - al < 62, Hence

614 .
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if we take R = min(d
I

,d
2

) we have that for 0 < lx - al < R

both g(x) 0 0 and g/(E) 0 O. Equation (I) can then be written

f(x) fl(E)
g'(;)

[Comment. Division often takes a lot of justifying.]

(2)

then

Now, given c > 0 there is a ó > 0 such that if

0 < lx - al < d,

If'(x) - c

But, as we have seen, if x satisfies (2) so does E, and

therefore

1.1i11-4 - LI < E

Since this is the same as

LI c'

our theorem is proved.
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For the case L = simply replace "given e > 0" by

"given M > 0" and replace all "< c" by "> N". L = -co is

handled similarly.

This proof will apply also to the cases x a+ and

x a-, since the essential point, that f satisfies the

same inequality as x, is assured here also by the fact that

lies between a and x.

For the case x 0, or x -03 we need the following

fairly obvious fact.

Theorem 5. If lim f(x) = L, then lim f(1/y) = L.
x4-0,

y-4-0+

Proof. Given li+03 m f(x) = L we want to nrove that for any

e> 0 there is a d > 0 such that

If(l /y) - LI < c whenever 0 < y < S.

Now for the given E, since )1,1T f(x) = L, there is an N such that

If(x) - LI < E whenever x > N.

Take S = 1/N if N > 0, otherwise S = I. Then 0 < y <

implies that l/y > N, and so implies that If(1/y) - LI < e,

as was to be proved. The converse is proved similarly.

1

Proof of Theorem 2. Letting y = we define

f(1/y) if y 0, g(1/y) if y # 0,

F(y) =
G(y) =

0 if y = 0, 0 if = 0.

676
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Then

F'(y) = fl()(y) = -

and by Theorem 5,

2f1(x), G/(y) = -x2g'(x),

lim F'(y) x2f'(x)
=

f'(x)
x÷0, 577-77-Y4'0+ 777-7 x+0,

-x2g1(x)

Since F and G satisfy the conditions of Theorem I we then

have

F(y) F'(y)
Gly) y.4.0+ G' (y)

Finally, applying Theorem 5 again,

f(x) F(y)
k4m 577 ag+ G(y) L.

Proof of Theorem 4. We do the case for lim Given E > 0x÷a+
our task is to find a 6 > 0 such that

Ifg(:) - < E whenever 0 < x - a < 6.

Since we are given that

f'(x)
lim

Trr>7.< "

it follows that there is a 6 > 0 such that

74 8
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(3)
Ifl(E)773- - LI < whenever 0 < c - a < 8l.

Now let x be any point in 0 < x - a < 6 By the Generalized

Mean Value Theorem there is a point E, between x and a + 61,

such that

f(x) - f(a + dl)
1 f'(E)

g(x) - g(a + 61) 77T

Since c also satisfies

0 < E - a < 6 we have, from (3),

(4)

f(x) f(a + dl)

g(xf - g(a + 617
LI <f.

O. X

Figure 4-2

a+cf;

For convenience set A = f(a + 61), B = g(a + 61). Then

(4) can be written in the form

This gives

f(x) - A
g(x) - B

where I6I <
E

f(x) = A + g(x)(L + 6) - B(L + 0)

or

f(x)
(5)

_L=e+A B(L + 6) I
A I

1001 + c/2)

g(x)
+ 1g(x)

678
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Now since UT+ Ig(x)I = co we can find a 62 such that

Ig(x)I > + IBI(ILI + c/2)) whenever 0 < x - < 6
2'

If we take 6 to be the smaller of 6
I

and 6
2

it then follows

from (5) that

If(x)
-6/75c < c

whenever 0 < x - a < 6,

which is what we wanted to prove.

The proofs for l tm and the cases when L is co or -co are

much the same as the one given for wari.. A similar direct proof

for grs does not work, for there is no way of insuring that

E a. However, it is easy to prove that if ars+f(x) = arsf(x) = L

then lim f(x) exists and also equals L, and from this the
x+a

theorem can be proved.

7rio
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PROBLEMS

I. Write complete definitions for the following:

(a) lim f(x) = L.
x÷a-

(b) lim f(x) = L.
x÷-ce

(c) lim f(x) = -=.
a

2. Prove Theorem 3.

3. Prove the following properties of infinite limits:

(a) If lim f(x) = = then lim (-f(x)) =

(b) If lim f(x) = A and lim g(x) = ± then

lim (f(x) + g(x)) = ±=.

(c) If lim f(x) = co and lim g(x) = co then

lim (f(x) + g(x)) = = and lim f(x)g(x) = =

(d) If lim if(x)1 = co then Jim = O.

4. Evaluate each of the following:

(a) I im
X*0

cos 2x - cos x
x2

i; - I

) 1,141+

731
680
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(c) lim
log x

x41.. arccos x

(d) aT (T7g X-7x TI

[Hint. Combine to make a single fraction.]

(e) lim ( I

x4I+ 6-(77-1- vx - I

(f) lim (sec x - tan x)
x4w/2

(g) lim (log(x - I) - log x)

(h) lim (vx + I - 7)
x40.

[Hint. Use some alge,%ra or else put y = 1/x.]

(i) li4 m 67./7(77T - 67) (j) li>m- x log(I-x)

5. Show that each of the following limits is zero:

'Za) lim .
x4.03

e

(b) lim x
x4.0,

e
ax '

C

a > 0

a > 0, c > 0.

[Hint. You can use the result of (a).]

(c) iim 122Lx4. a '
x

a > 0.

611
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These three, along with Example 6

lim x
-a log x = 0,

x+0
a > 0

occur frequently and are worth remembering.

6. Prove that if P and 0 are polynomials, of degrees p

and q respectively, then

0 if p < q,

P(x)
xli+co m Q(x)

±.= if p > q,

c # 0, if p = q.

7. Prove: If g and h are differentiable in the neighbor-

hood of 0 and if g(0) = h(0) = 0, then

1(x))
lim (I + g(x» 1/h(x) = exp (lim g'(x)x+0 x+0

if the latter limit exists.

Evaluate the special cases:

(a) lim (I + h)
l/h

h4-0

(b) lim (I + 21)n
n+ n

(c) lim (I + x2)1/x
x-0

(d) lim (I + x)
I/x2

>0-0

682
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8. (a) Given that f is continuous in the neighborhood of

a and that f'(a) exists, prove that

f(a + h) - f(a - h)
I'm f'(a).
h+0 -2h

[Hint. Use the Lemma of Section 7-1.]

(b) Given that f and f' are continuous in the neighbor-

hood of a and that f"(a) exists, prove that

f(a + h) - 2f(a) + f(a - h)
lim = f"(a).
h+0 h2

683
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Chapter II

TECHNIQUE OF INTEGRATION

I. Introduction.

We saw in Chapter 8 that an integral f(x)dx can

be evaluated as F(b) - F(a) provided we can find an in-

definite integral, or anti-derivative, F, such that

F/(x) = f(x). This method of evaluation is often so much

more valuable than a numerical approximation that one may

go to great pains to effect it, if possible. This chapter

is primarily concerned with the most useful devices for

finding indefinite integrals.

What do we mean by "finding an indefinite integral"?

The function f(x) = VI + x2 has the indefinite integral

x

F(x) = jr t2dt, but obviously this expression does
0

not help us in evaluating J° VI + x2dx; on the other hand,

F(x) = .;.[x2 + I + log(x + + I)]

does help, yielding

1 + x2 dx = F(I) - F(0) = 4.[7 + 199(1 + 17)]

= 1.14779.

685 73
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What we want, in fact, is a combination of the functions we

have introduced - polynomial, trigonometric, logarithmic,

and their inverses - by the arithmetical operations and by

composition of functions. A function expressible, expli-

citly or implicitly, by such a combination is called an

elementary function.

The differentiation formulas insure that the derivative

of any elementary function is again an elementary function.

This is not true of anti-differentiation. It can be proved,

for instance, that the anti-derivative of ex/x is not

elementary. Hence our indefinite integration techniques

will not always work. Even worse, there is no usable cri-

terion for determining which functions have an elementary

indefinite integral and which do not. We shall see that

certain classes of functions can be integrated in elementary

terms but beyond this it's simply a matter of trying until

you decide it can't be done. There are ways of proving

it can't be done in certain cases but these are topics for

advanced analysis.

Two of the three basic processes for integration have

already been introduced, namely algebraic simplification

and substitution. Both of these aim to reduce the integrand

to an expression, or a sum of expressions, whose integrals

are known. It follows that the more integrals we know the

686
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easier is our task. On page 669 there is a very short table

of integrals to serve as a basis for this chapter, but any-

one expecting to make much use of integration should get

one of the more extensive tables that are available. Most

of the integrals in this short table have already been

encountered (numbers 1,2,3,5,7,8,9,10,11). The others are

added to give some completeness; for example, numbers I to

4 enable us to find

Jiaxe + bx + c

where P(x) is any polynomial and a,b,c any constants.

The new integrals, numbers 4,6,12 and 13, can be checked

by differentiating the answer to get the integrand. In

fact, this is the ultimate test of any problem in indefinite

integration. One perfectly good method of integration is

to guess an answer and test it by differentiating. Usually

the "guess" has some reasoning or past experience behind it.

We shall discuss this possibility in Section 6.

In the short table of integrals we have used log lul

for brevity in those formulas leading to logs. This may

also be done in the problems. As suggested in Chapter 9 it

is safer in applications to use either log u or log (-u)

depending on whether u > 0 or u < O. We have also omitted

the arbitrary constant (this is common practice in integral

tables) but this_s-hWuld be supplied in all problems.

681
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A SHORT TABLE OF INTEGRALS

I . f xndx = xn+I if n -I

2. f x-1 dx = log I xl

3. dx = arctan
a a

x2 + a2

_4.
I dx =

x - a2

5.

6.

7.

f Va

I

al76.I

log
xx

dx = arcs In

>c 2 dx = log

eaxdx = I eax
a

x

a
a > 0

1 x + x2 ± a2

8. f sin ax dx = --I
a

cos ax

9. f cos ax dx =
a
I sin ax

10, f tan ax dx = -t+ log I cos axi

1 1 f cot ax dx = -a-1 log I sin axl

12. f sec ax dx =
a
I log I sec ax + tan axi

13. f csc ax dx = --a-I log I csc ax + cot axi

7 3 8
688
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You may find that different methods of doing an indefinite

integral can lead to apparently quite different answers.

By the basic theorem on antiderivatives any two answers,

if correct, must differ by at most a constant, although it

may take some algebraic ingenuity to show this. The same

theorem can be used to simplify some answers; for instance,

log
x 3 can be replaced by log Ix + 31 since these differ

by log ', a constant.

In this chapter we shall frequently be referring to

examples in other sections, so we temporarily adopt the

notation that a reference to Example 3-4, for instance, is to

Example 4 of Section 3.
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Problems

I. Evaluate the following indefinite integrals.

(a) jr(x3 - 3x2 + 3x - 1)dx

(b) f (7 - )dx
/7

(c) f 2 sin 36 de

(d)
f

4e
-2x

dx

(e) dx
x2 X2 + 5

(f) f dx
X 2 - =

(g) Jr 4
dx

47777

(h) jrsec26 de [Hint. What function has sec26 as

its derivative ?].

ii) jr sec 6 tan 0 de [Same hint.]

740
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2. Algebraic Manipulation.

The possibilities of writing the integrand in different

forms are so varied, especially for trigonometric integrands,

that only vague general rules can be given. One of these

is that breaking the integrand into a sum of terms is often

useful. Another one is the simplificatio. of a quadratic

polynomial by compieting the square and making a substitu-

tion. On the whole, however, what one needs most is ingenuity.

The following examples illustrate some standard tricks.

Example I.
2x2 + 3x - 7 dx.

x + 2

By long division

and

2x2 + 3 - 7 = 2
I

5

x + 2(
7-7-7 '

jr(2x - I - 7--)dx = x2 - x - 5 log Ix + 21 + C.

Evidently any integrand of the form P(x)/(ax b), where P

is a polynomial, can be integrated this way.

Example
2x2 - 7x - 5

dx.

As in Example I we first divide, to get
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2x2 - 7x - 5

1 7 , I 59x + 35
x -r -r

5x- -

In the denominator of the fraction we complete the square,

thus:

)2 8
x2 7-7x

5- 7 =
, 9
(x - 7T

., - .

In the fraction we now make the substitution y = x

dy = dx, to get

7

4

r 59x + 35 59 r 2ydy
+

553 r I

dx 7-
2 89

dy.
4 -7-rfg

X 2 -
7 - y T6 Y

The first term integrates to

r-59 log ly2 - ;261 , formula 2,

and the second one to

553 logy - F7/4
2/77 y + (/4

Hence, finally,

formula 4.

X3 1 7 59 7 2 8 9
dx = Tx + TX 1- -r- .) log - ) - +

2x2 - 7x - 5

692
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+ 553 log
ix - 7/4 - 1/77/4

I + c
16i7T Ix - 7/4 + 89/41

= I [4x2 + 28x + 59 logl2x2 - 7x - 51

553
log

ITT

where C = CI + 1-.
59
6. log 2.

Example 3. fsin ax sin bx dx.

We use the trigonometric identities,

4x - 7 - /TT

4x - 7 + /TT
+ C

cos (A + B) = cos A cos A - sin A sin B,

cos (A - A) = cos A cos B + sin A sin B.

Subtracting gives

cos (A - B) - cos (A + B) = 2 sin A sin B;

i.e., the product on the right hand side has been expressed

as a sum. Our procedure is now clear:

fsin ax sin bx dx = f ..[cos(a - b)x - cos(a + b)x]dx

sin (a - b)x
2(a - b)

sin (a + b)x + C,
2(a + b)

693
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provided a # ± b. If a = b we get the important special case:

fsi n2 ax dx = f 71( I - cos 2ax)dx

=
17 sin 2ax + C.

The cases Fos ax cos bx dx and fsin ax cos bx dx can be

handled similarly, using the identities

2 cos A cos B = cos (A - B) + cos (A + B)

2 sin A cos B = sin (A - B) + sin (A + B).

The special case fcos2 ax dx = x +
I

4a
sin 2ax + C is also

of special note.

Example 4. Jr rl - sin x
dx = dx+snx J I - sin2x

694

iri - sin x
dx

cos 2 x

°I ,(sect x - sec x tan x)dx

= tan x - sec x + C.

74,
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This is an example of a problem that just happens to

succumb to the right trick. If the I in the denominator

is replaced by 2 the trick doesn't work and the an

obtained in Example 3-1i, is much more compli ated.

For convenience we list here some of the lesser known

trigonometric identities that are useful in integration

problems.

sect x - tan2 x = I

csc2 x - cot2 x = I

or (csc x - cot x)(csc x + cot x) = I

sin2 = 1(17 7 - cos x)

cost = ( I + cos x)

tan
I - cos x7

s n x

'tan 2x =
2 tan x

I - tan2 x

t,

sin x
1+ cos x

7 4

695

= sec x - tan x
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Problems

I. Evaluate the followng indefinite integrals.

2

(a) jrxe2x dx

(b)
f cos 2x dx

J I + sin 2x

(c) flt sin log t dt

(d) Jr dx
x12 +

(e) Jr dx
+ I

(

e2X -
f) dx

J e" + I

5

(g)
X dx

J (x3 + 1)2

(h) Jr
sin x

dx
I + cos 2x

(,) Jr sin 7x sin 3x dx

(j) f cos 3x cos 7x dx

(k) Jr sin 3x cos 2x dx

8x - 2
(I) Jr

4x
2 - 4x

dx

696

There is a quick method.]

74(3



www.manaraa.com

(m)

(n)

(o)

f sec2x dx
J I + tan x

dx
2x2 + 4x + 3

f57-2-72-<
I dx

(p) f (lo x) 3 dx

4x3 + 5(q) dx
2x2 + x

(r)

(s)

(u)

(v)

fx + I dx

Jr cos x(2 cos x + 3 sin x)

dx

(x + 2))(2 + 4x + 3

Jr 177727 dx
x +

fsec2x tan2x dx

(w) dx

(x)

(y)

(z)

f _
dx

cos x

cos x dx
cos x

dx
Jr 4 sin2x 691 747

dx [Compare with (m).71
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2. Evaluate

fsin x sin 2x sin 5x dx

3. Derive the formulas for cos A cos B and sin A cos B

on page 675.

4. Let m and n be integers > 0 and let

2r
A
mn

= f sin mx sin nx dx,
0

2r
B
mn

f cos mx cos nx dx,

0

2r

Cmn
= f sin mx cos nx dx.

0

Show that A mn'
B
mn,

C
mn

are all zero except that

r if n 0,

A
nn

= = B =

2r if n = 0.

5. (a) For any number n, prove that tan
n x = tan

n-2 x sec2x -

tan
n-2

x.

(b) Establish the formula

tan
n-I x -

jrtan
n-2 x dx.ftan n x dx = n - I

This is known as a "reduction formula".

(c) Use the reduction formula to evaluate

jrtan8x dx and ftan9x dx.

696 74 8
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3. Substitution

In Chapter 8 we considered substitutions that reduced

the integrand immediately to one of the standard forms.

Usually this cannot be done; the substitution merely

simplifies the integrand, making it ready for a further

substitution or some other modification. There are several

useful general types of substitutions.

I. If the integrand involves a function g(x) to a

negative or fractional power, or if g(x) appears as the

argument of a transcendental function, try the substitution

u = g(x) or un = g(x) for a suitable n.

Example I.

Let u = e
x

+ I, du = exdx = (u - I) dx. Then

f'e x
+ I

f e
x

+ I

'

dx = jr(ex + 1)1dx.

dx = jr1 du =jr du.

u u - I u2 - u

This is now of the form discussed in Example 2-2.

is a quicker solution:

f 1 dx =
Jr e-x

dxi
e
x

+ I 1 + e
-x

rcm + ex)
+ e-x

= -log(I + e-x) + C.

749
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Example 2.
X5 dx.

r

Let u2 = x2 + I, 2udu = 2xcix. Then

jr(x2)2(xdx)

1/72-7

x5

1-

dx
7>

jr(u2 - 1)2udu

= jr(u4 - 2u2 I)du

c 2
Tu - 7u4 + u + C

(44.14 - ;u2 1)11 C

In
w-(3x4 - 4x2 + 13)/7777-7 + C.

Example 3. jrsin(log x)dx.

Let u = log x, x = eu, dx = eudu. Then

fsin(log x)dx = jreusin u du.

The new integral is a standard type that we shall examine

later.

A trigonometric Integrand that can be reduced to

a function of sin ax and cos ax can often be simplified

by using u =sin ax or u = cos ax.

750
--.
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Example 4.
sin 36
+ cos 6 do.

First we have

sin 36 = sin(26 + 6)

= sin 26 cos 6 + cos 26 sin 6

= 2 sine cos26 + (cos26 - sin26)sin 6.

Now let u = cos 6, du = sin ede. Then sin26 = I - u2 and

we get

I sin 30
+ cos 6 dO =

2u2 + (u2 4. u2)
du,

I + u

ready for the substitution v = I + u or the method of

Example 2-I. We could have saved one step by letting

u = I + cos 6 to begin with but it is sometimes better not

to do too much at once.

Example 5. jrsin42x cos52x dx.

Here the proper substitution is u = sin 2x, du = 2 cos 2x dx.

Let us first see how it works, and then why. Changing the

form of the integrand slightly, we have

jrsink 2x cos`' 2x cos 2x dx

= J. 4(i u2)2;Au,

since cos22x = I - sin22x = I - u2.
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The reason this simplified so nicely is that after

removing one factor of cos 2x to go with the dx to make du,

we had an even power of cos 2x left, and so no square roots

were introduced. The same phenomenon occurs in Example 4

with the roles of sin and cos interchanged.

It is easy to see that this process will work for

jrsinmax cosnax dx

if one or both of m and n are odd. The case when they are

both even will be treated later.

Occasionally a substitution of another trigonometric

function,u = tan ax, u = sec ax, etc. will simplify things.

III. An algebraic integrand involving the one irrational-

ity /a2 x2 can be reduced to a rational trigonometric

integrand by the substitution e = arcsin x/a or x = a sin 6.

(One can use cos instead of sin but there is rarely any

reason for doing so). Then /7-7-77 = a cos 6.

Exariet. 2
dx.

(x + 2) /77-72-<

x = 2 s i n 6 , /4 - x2 = 2 cos 6, dx = 2 cos° de.

2
dx

(x + 2) V4 - x2

'1O2

4 cos () de

Jr(2 sin e 2)2cos e
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de

jrsin 0 + I

(tan e sec 0) + C, by

Example 2-4,

2 sin 0 - 2 + C
2 cose

x - 2
+ C.

4 - x2

Example 7. We can finally find the area of a circle by

integration.

a2 - x2 dx = fa cose a cose de

a2j(cos20 de

a2 + cos 20) de, see Example 2-3,

27 (0 + sin 20) + C
2

a2
(0 + sin 0 cos 0) + C

a2 x + 4/7= x2= arcs in + C
a

The area of the circle is

a

4 j(
0

a2 - x2 dx = 2a2 (arcsin I) = na2.

707 5 .
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The irrationalities (2 - a2 and x2 + a3 can be handled

similarly by the substitutions x = a sec 8 and x = a tan 0,

with appropriate use of the identity sec26 - tan20 = I.

Example 8.
I + x

Jr dx.

Here we use

to get

x = 2 sec 0, x2 - 4 = 2 tan 6, dx = 2 sec 6 tan 6 de,

2( I + 2 sec 8)sec 8 tan 6 de = U(cos28 + 2 cos 0)d0.

16 sec36 tan

Doing jrcos2e de as in Example 7, we get

[;-0 + n 0 cos 0 + 2 s i n 81 + c

2 2/x 2 - 4 /77-7:7
6
[arccos- + + 4 + C

x2

7-4
2

=
I r4x + 2 1/72 + arccos7] + C.

J

The expressions for the functions

of 6 in terms of x are most easily

seen from a diagram like Figure 3 -I.

In the final answer we used arccos-
2

x

as being a more familiar function

than arcseo2 - .

.104

Figure 3 -I
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Example 9. I dx.
x2,6(2 a2

Here 'we use

SO

x = a tan 6 x2 + a2 = a sec e, dx = a sec20 dO,

dxf x2)/x2 a

a

Figure 3-2

from Figure 3-2.

a sec26

J a2 tan20 a sec e

cos
de

La2 f singe

1 rd(sin 0)

a2 sin20

a2 sin e

(2 + a2
a2x

de

One can combine this type of substitution with the

technique of completing the square, used in Example 2-2,

1-o handle any irrationality of the form ax2 + bx + c.
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xExample IJ. 7777 yV f

Put y = x +
2 to get

x

73x

dx

I r dx

i/x
2 4x +

4 4

1 f y - 2/3
J ly2 4/9

2
Now we use y = 3 sec 0.

3 7

fdx
././( 2

3

Figure 3-3

2 2

1.7
sec to

2
sec e tan e de

7 tan e

2 jr(sec2e - sec 8) de

33

2

37
(tan 8 - log

4

3/3
[1/2222

Isec 8 + tan el) + C

log 13Y /77r7:71]
2

106 75,3

+ C
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+ I2x

J

+1

+

/9x2 +
I3x + 2 + Ax2

I2x - 2 log
3/T

2

/y3x2 + 4x
2 log 13x + 2 + 3(3x2 + 4x)I-

i3

IV. We saw in Examples 2 -I and 2-2 how any rational

function P(x)/0(x) could be integrated if n were of degree

1 or 2. In Section 5 we shall extend this result to a

denominator of any degree, iecause any rational function

can be integrated there is interest in techniques that

transform an integrand into a rational function, as was

done in Examples 2,4, and 5. There is a standard method

of doing this if our integrand is any rational function of

sin 0 and cos 0. The method frequently gives the answer in

a rather complicated form, and it should be used only when

other methods fail.

The substitution arises from the parametrization of

the unit circle (see Problem 2(d), Section 7-7),

Since

- -t-2

I

x
+ t2

2t
.

1 + t2

x = cos e, y = sln 0 ,

101
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is also a parametrization of the unit circle we .might

--'expect to get something interesting by putting

I t2 2 2t
cos 0 = -I + sin 0 =

I + t2 I + t2 I + t2

We do! First of all, differentiating cos 0 with respect

to t gives

SO

-sin 0 dO
dt

dO
2

-4t

(I + t2)2

dt.
I + t2

The relation

-2 sin 0,
I + t2

dt =
1 +

dO
os 0 is sometimes, useful.

To solve for t in terms of 0 notice that

or

2 sin 0
cos 0 + I

I + t2

=
sin 0

I + cos 0
tan

0 I - cos 0
=

2 sin 0

Armed with these formulas we can proceed 4:o intege,

1

Example II. Jr de.

This is the integral mentioned in Examr,le 2-4 as not heir

integrable by a simple trick. If we use our substituts

for sin 0 and dO we get

708
758
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This is of the type of Example 2-2. We have

1 dt
t + t + 1

(t
dT

2 t + 1/2
= arctan

VT /3/2
+ c

2 2

6
2 tan + I

= arctan
$15 $15

+ C.

If we prefer to have the answer in terms of sin 6 and cos 8

we can use

to get

tan
0

=
I - cos 0

2 s n 0

2 2 - 2 cos 0 + sin 0
arctan C.

7 sin 0

Speaking of guessing: one would hardly guess that the

derivative cf this functic-: is 2 + sin 6

7'59
709
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Problems

Part 1.

I. Evaluate each of the following.

(a) f dx

x(1 + x- )

dx

x/7777

dx

j e2X -

(d)rtan 2x sec 2x dx

(e) f x 3 dx

(f)jrsin (ax + b)dx

f dx
x 67r-7-7-

(i)jrx3(x2 - ()2/3dx

I loa x(j)jre dx
x

110

76 o
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(k)f dx
+ 67

( I) jrx dx

2. For what values of c is J
xc dx easily integrable?
- x2

f
111
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Part II.

3. Evaluate each of the following.

(a)jrsin 2x cos42x dx

(b) ftan 2x sec22x dx

(c)jr cos
2x

dxcos x

(d)jrsin33x cos43y dx

(e)jrtan3x sec x dx

(f)jrsec2x tan2x dx

(g)jr
sin 2x

dx
a + b c tis x

(h)ftan2x tan 2x dx

4. Finish Example 4.

5. Show by integrating that

J cos 2x + a cos x

a 4 cos x +
+ log

2)/aL + 4 cos x +

dx

a

=

4

-flog I

2
cos 2x + a cos xl

+ C.r'e'' + 8

a - V-EL + 8

76
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Part III.

6. Evaluate each of the following.

(a) f x3 dx
J 47:77

2

(b)
r X dx

(c) r x3 dx
4 + x2

(d) jr/271:T2I
x 1

dx

x2
(e) f dx

3 - 2x - xr

(f)jr(x2 - 4x + 8)3"dx

(g) jr
x

(2x2 + 2x - 1)3/2
dx

(h)jrdx

xx2 + tax

7. Show that for any value of m and n,

2 n,l
jrxm(a2 - x2)n/ dx am4"1-1-1 jrs n

m 0 cos 0 de.
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8. The hyperbolic functions sinh u and cosh u (Section 9 -I,

Problem 13) can be used instead of tan 0 and sec

for the integrands involving x2 + a2 and x2 - a2

respectively.

(a) Do Problem 6(c) by this method.

(b) Solve v = cosh u for u to get, for u > 0, arccosh v =

u = log(v + /777). [Hint. Reduce v = cosh u

to a quadratic in eu.]

(c) Do Problem 6(d) by this method.

114 76
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Part IZ. Many of these problems can be done by simpler

methods than the substitution t = tan x/2.

9. Evaluate each of the following.

jr cos x
(a)

I

dx
+ cos x

(b) jr1 + cos x + sin x dx

(c) cos x - sin x dx

(d)f

(e) f

cos x dx
sin x(I + cos x)

cos x dx
sin x(I + sin x)

(f)jr
(1 + sin x)(I + cos x)

(g)jr
(I + sin x)(2 + cos x)

dx

dx

(h)fa + cos x
dx. Consider all possible values of a.

10. Reduce each of the following to the integral of a

rational function. Get as simple a result as you can.

(a) f sin x dx
I + sin x

(b)jrtan x tan 2x dx

n5

76

(c) irsec3x dx
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II. (a) Reduce

(b)

f a

dx
+ b sin x + c cos x to

2dt

(a (a - c)t2 + 2bt + (a + c)

dxEvaluate + b sin x + c cos x

Consider the cases

case a = c.

116*

nL = b2 + c2 and the special
<)

7 6 e
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4. Integration la Parts.

There remains one basic differentiation formula that we

have not yet exploited in our integration, that is the pro-

duct formula. In differential form this formula is

d(uv) = u dv v du,

giving; le corresponding formula for indefinite integrals,

(1) uv = fu dv + iv du.

Only in extremely rare cases can we expect to find

functions u(x) and v(x) for which our given integral reduces

to fu dv + fv du. Our use of (I) depends on putting it in

the form

jru dv = uv - v du,

and choosing u(x) and v(x) so that our given integral

J = ff(x)dx has the form J = jru dv and so that ir.v du is

simpler than J. Thus integration by parts, the name for

this process, never gives us a final answer but only changes

the form of the integral, hopefully so that one of the other

methods can be applied.

The first thing one must do in integrating by parts is

to express the given integrand in the form u dv. This is

717

76



www.manaraa.com

ordinarily done by writing the given integrand f(x)dx in

the form u(x)w(x)dx and taking v as fw(x)dx.

Example I. J = jrx' log x dx.

We write the integrand as (log x)(x2dx), taking

u = log x, dv = x2dx,

from which

This

du Idx, v = x
-4

.

J =
3

x3 log x f' X 3 ;Lc dx

= 4 x 3 log x Ljrx2 dx
3

7
.x3 log x -
9

x 3 + C.

A given integrand can be expressed as u dv in many ways -

in Example I, for instance, as (x log x)(x dx) or (x2 log x)(dx)

or (x4)(log x dx/x), etc. and it is to our advantage

to pick one that leads quickly and easily to the best form of

jCv du for further integration. The following observations

may be helpful.
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I. dv = w dx should be easily integrable. The most

common choices of w are xn, sin ax, cos ax,
eax. The possi-

2
bility of more elaborate choices, such as xe

x,
sin

n x cos x,

etc., should not be overlooked.

2. The simplification in fv du usually arises from

the differentiation of u, and one should be on the lookout

for this. Polynomials, logs, and inverse trig functions are

all simplified by differentiation.

Example I
illustrates both these observations.

3. v is any function whose differential is dv. That is,

the constant of integration obtained in passing from dv to v

can be given any value we please. Usually we take it to be

zero, as was done in Example I. A different choice may

affect the final constant, a matter of no concern, but it

may also make the intermediate stages easier. Here is an

example:

Example 2. J = fx3 arctan x dx.

The main interest here is to get rid of the arctan x, so

following observation 2 we take

u = arctan x, dv = x3dx,

d u I dx, v X
4

.7-

X2 I

} A , 119 769



www.manaraa.com

The idea is to take C so as to simplify v du. Since

1x4 - I = (x2 - I) (x2 + 1) if we take CI = we get

v du = 4.(x2 - 1).

So

J = 4.(x4 - I) arctan x - 41(x2 I) dx

= 4.(x4 - I) arctan x - x3 + 41 x + C.

The choice C1 = 0 would have left us with

r X4

J x2 + I

to evaluate.

dx

Example 3. J = fx2 sin 3x dx.

We note that sin 3x is neither simplified nor complicated

by either integration or differentiation. x2 is simplified

by differentiation, so we take

giving

du = 2x dx,

dv = sin 3x dx,

v = -. cos 3x;

J
2

=
3

x2 cos 3x + jrx cos 3x dx.

120
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We have achieved a simplification but must evidently repeat

the process. This time we have

u = x, dv = cos 3x dx,

du = dx, v = I sin 3x;
3

2 [ I 1

J x2 cos 3x + x sin 3x - jrsin 3x dx]

1
2 2

= -3. x2 cos 3x + 5,- x sin 3x + cos 3x + C.
27

Some of the most useful applications of integration by

parts leave us with an jry du that is as complicated as the

original integral J, or, indeed, even identical with it.

However, two occurrences of J in an equation is not fatal

unless they cancel; otherwise we simply solve for J.

Example 4. J = jre-ht sin wt dt.

The integrand is taken from Example I of Section 9 -I. Here

our two observations are no guide and we take, as a try,

u =

du =

J =

e-ht dv = sin wt dt,

-he
-ht

dt,
1v = -- cos wt,
w

I -ht cos wt -L jre-htcos wt dt.

721 7
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The only significant change is the replacement of sin by

cos in the integrand. Evidently if we apply the same

scheme once more we shall get J back again.

or

u = e-ht dv = cos cat dt,

du = -he
-ht

dt, v = - sin wt,

I -ht h [I -ht hjr -ht sin wt dtJ = --e cos WT -e sin wt + - e
co co

J = e
-ht -I

h2
cos wt -- sin wt - J.

w2 w2

Solving for J gives

I -ht h 2

J = --e (-w cos wt - h sin wt)/(' + --) + C
w2 w2

I

e
-ht (-w cos wt - h sin wt) + C.

h2 to2

Procedures similar to this give us a very useful class

of integration formulas known as "reduction formulas". These

apply to integrands that depend on a constant, n, usually a

positive integer. The reduction formula decreases the value

of n, so that by successive applications we can get n

sufficiently small, usually 0 or I, that the integral can be

evaluated. A few reduction formulas are obtained by algebraic

manipulation (see Problem 5 in Section 2) but most come from

integration by parts.

122
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Example 5. Let J
n

sinn ax dx.

We take

u = sin
n-1 ax,

du = (n - 1)a sin
n-2 ax cos ax dx

Then

J
n

Solving

=
a

=
a

I

=
a

for

sin
n-1

ax

sin
n-1

ax

n-I
sin ax

Jn gives

cos

cos

cos

the

dv = sin ax dx,

v = - cos ax.
a

ax + (n - I) jrsin
n-2ax cos2ax dx

ax + (n - I) jrsin n-2 ax(1 - sin2ax)dx

ax + (n - 1)(J
n-2

- J
n
),

reduction formula,

sin
n-lax cos ax +

(2) jrsin nax dx = -ate

As an application:

n - I f
n

sin
n-2 ax dx.

fsin62x dx = -in52x cos 2x 4- 5 fsin42x dx,

jrsin42x dx =
8 4
sin32x cos 2x + 4. fsin22x dx,

fsin22x dx = -1.1 sin 2x cos 2x +
2
fdx.

723
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So

sin6x dx = sin52x cos 2x + sin32x cos 2x

3 I+ (--- sin 2x cos 2x + ,x)] +
4 4

5 2 15
= sin42x 77 sin 2x - 7esin 2x cos 2x

15
+ 77x + C.

Such reduction formulas take care of the case left open in

Example 3-5.

The reduction formula (2) is the type of recursion

formula well adapted to flow charting and programming. At

any stage of the process of finding any Jm we have an ex-

pression like

+ b
n
J
n'(3) J

m
= cmT

m-I
c
m-2

Tm-3 '" c n+2
T
n+1

where the cis and b's are constants and T
k

= sin
k ax cos ax.

Applying (2) to Jn gives

J = c T + + c T
1 n I

m m-I n+2 n+I an
b
n
T
n-I

b
n
J n-2

.
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Since this is to give (3) carried one step further, namely,

Jm = cmTm-1 + + c n+2 n+I
+ c

n
T
n-1

+ b n-2
J n-2'

we must have

1 ,

n'

n - 1

cn = ---u b
n-2

=
n

b
n

.

an

These recursion formulas for the coefficients enable us to

construct the flow diagram in Figure 4 -I. We leave it as

an exercise for the reader to put on the proper endings for

the cases m odd and m even.

Figure 4 -I

115
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Problems

I. Evaluate each of the following.

(a)jrx sin x dx

(b)jrx ex dx

(c)jrarcsin 2x dx

(d) fx sec2x dx

(e)jr9x tan23x dx

(f)jrarcsin dx

(g)irx2ex dx

(h)jr(log x)2dx

(i)jr3x3,6777TT dx

(j)jrx arctan x dx

(k) feax cos bx dx

:r 726 7 7C
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(I) fx2 cos 2x dx

(m) r x3 dx
4-71777

(n)jrx arctan x
dx

/1777

(o) flog (x2 + 1)dx

e
sin x

dx(p)jrsin 2x

(q)jrsin & dx

(r) X3e x2 dx

(s)

(x + 2)2

2. Evaluate

dx

fsec3x dx.

3. Evaluate jrxex sin x. [Hint. Take dv = ex sin x dx

and use the result of Example 4J

4. (a) Develop a reduction formula for

jrxn47177 dx.

[ Hint. Use dv = x477777 dx.]

121 7-'1t
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(b) Evaluate fx817-771) dx.

5. (a) Develop a reduction formula for

J
n x2

x e dx

(b) Of the cases n = 10 and n = II, one can be evaluated

as an elementary function and not the other.

Evaluate he nne that you can.

128
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5. Partial Fractions.

At the beginning of Section 2 it was stated that one

method of integrating is to express a complicated quantity

as a sum of simpler ones. The method of partial fractions

is Just this idea applied in a systematic way to rationai

functions.

You will recall that a rational function is one expres-

sible in the form f(x) = )

'

where P and 0 are poly-
x

nom!als, P and 0 can be any polynomials, with the one

exception that Q(x) is not identically zero. However, we

are not interested in the case Q(x) = constant, for they f

is itself a polynomial and we know how to integrate it.

So we assume that Q(x) involves x, and by dividing P(x) and

Q(x) by the coefficient of the highest power of x in 0(x)

we reduce Q(x) to the form

0(x) = xn + a xn-1 + . + a
n-I

x + a
n,

n > I.

So far we have said nothing about the polynomial P. If

the degree of P is less than n we leave P as it is. Rut if

its degree is > n we divide P(x) by 0(x) by long division,

getting a quotient S(x) and a remainder PI(x), thus:

Px P
I

(x)
(

(i-)
S(x) +

Tc 0(x) '

129 7 9
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where the degree of P1 is < n. Since we can Integrate the
P1(x)

polynomial S without trouble we concentrate on 7170. . So

frcm
P(

here on we shall discuss under the assumption

that the degree of P Is < n. We can also assume that P(x)

and Q(x) have no common factor, since such a one could be

divided out.

Consider the possibility of writing our rational function

In the form

P(x)
P (x) P2 (x)

Q (x) "6 '

where each Qi has lower degree than 0. For this to be

possible each prime factor of Q(x) must appear in at least

one Qi(x) to the same multiplicity that it appears in Q(x).

This suggests that we take for the 01(x) simply the prime

factors of Q(x) to the powers to which they appear in 0(x).

For example, we might expect to get

P
3
(x)P (x) P

2
(x)

x2 + 2

(x - 1)(x + 2)2(x2 + 1)3 - I
(x + 2)2 (x2+1)3

The terms with multiple factors In the denominators can in

turn be broken down still further; for example,

ax + b a(x + 2) + (b - 2a) a b - 2a

(x + 2)2 (x + 2)2 x + 2 (x + 2)2

130
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There is more than one criterion for deciding when to stop

but the most common case Is stated in Theorem I, a proof

of which is given In Appendix A.

Theorem I. Let Q(x) have the form

Q(x) = (x - a) (x - (x2 + cx + d)r(x2 + ex

where no two of x - a, x - b, , x2 + cx + d, x2 + ex + f,

have a common factor. Then If degree of P < degree of Q,

P(x)
7;7

A
i

A
2

A'

+ +
(x - a)2 (x - a)Px - a

BB
I

B2
+ +

(1 +

x - b (x - b)2 (x b)P

CI x + D
I

C
2
x + D

2
Crx + Dr

+ +

x2 + cx + d (x2 + cx + d)2 (x2 + cx + d) r

Elx + FI E
2
x + F

2
Esx + Fs

+ +

x2 + ex + f (x2 + ex + f)2 (x2 + ex + f)s

The following examples Illustrate the application of this

theorem and two methods of determining the values of the

constants A B1, 7, 01.0
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Example I. We derive basic formula 4.

A + B

- a2 x - a x + a

Clearing fractions gives

I = A(x + a) + B(x - a).

Since this equation is an identity it will hold for any

value of x.

For x = a:

For x = -a:

Hence

I = 2aA

I = -2aB

A =
2a

B = -
2a

f I/2a I/2a
dx

2
dx =

Jr x2 _ a 'x-a x+a

2a1(3.9
lx - al - 4-21-loq lx + al + C

Ix
lx

+
- al + C.

a

Example 2. f 3

x4 dx.
X3 +

First we must divide x4 by x3 + I, to get

7

x -
x3 + I

x3 + I
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By Theorem I,

A Bx + C

3x + I (x + I)(x2 - x + I) x + I x2 - x + I

Clearing fractions

x = A(x2 - x + I) + (Bx + C)(x + I).

For x = = 3A, A = I

3

Since no real value of x will make x2 - x + I equal zero

(we prefer to avoid complex numbers at this point) we simply

use any two values other than -I.

For x = 0: 0 = A + C, C = -A =
3

For x = I: I = A + 2B + 2C, B =
1

.

3

Thus we have, finally,

4fX4
3+

dx =
1/3 I x + I ] dx.

3x+ I x2 - x+ I

The first two integrals are easy enough. For the last we

complete the square in the denominator, (x - 1/2)2 + 3/4, and

then put u = x - 1/2, to get

f u + 3/2 3 2
du = 71 log ( u2 + 3/4) + arctan 2u

u2 + 3/4 IT

733
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Hence

x4 I I

log
1

6dx =
2

3
- - lo lx + II + log(x2 - x + I)f x3 +

-
+

1

arctan
2x 1 + C.

Example 3. Let us do Example 2 by a different method.

Starting with

x = A(x2 - x + 1) + (Bx + C)(x + I)

we multiply out the right hand side and collect terms, to get

x = (A + B)x2 + (-A + 8 + C)x + (A + C).

Since this is an idei :ity the coefficients of the various

powers of x on the two sides must be equal; that is,

0 = A +

I = -A +

0 = A +

B

B + C,

C.

Solving these simultaneous equations gives A = -1/3, B = 1/3,

C = 1/3, as before.

In some ways this is a more direct procedure than the

substitution process of Example 2, but it leads to simultaneous

134
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equations of a more: complicated sort. One can combine the

two methods,first determining as many constants as possible

by substitution and then expanding and equating coefficients.

Neither of these methods is suitable for very compli-

cated problems. For these the algorithmic methods developed

in Appendix A are to be preferred.

Example 4.
X5 + 2

dx.
j (x3 + 1)2

Here we have

x5 + 2

(x3 + 1)2

or

x5 + 2 =

+

By putting x

A Ei Cx + D Ex + F

x + I (x + 1)2 x2 - x + I (x2 - x + 1)2

A(x + I)(x2 - 1)2 + R(x2 - x 1)2

(Cx + D)(x + 1)2(x2 - x + I) + (Ex + F)(x + 1)2.

= -I we get B = I/9. Further substitutions or

equating of coefficients, (try each to see which you prefer)

lead to five eauations in the remaining five constants

A, C, D, E, F. These can be solved by successive elimination

to give

x5 + 2 7 -9x + 6 2x + 4

(x3 + 1)2 9 (x + 1)2 x + I ( - x + 1)2 - x + 1
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The first two of these fractions are easily integrated.

For the last two we complete the square, (x - 1/2)2 + 3/4,

and substitute u = x 1/2. The two fractions can then

be further broken up, to give

(I)
_9 f 2u du + 3 f du 2u du

2 J (u2 + 3/4)2 2 J (u2 + 3/4)2 u2 + 3/4

+ 5 f du

J u 2 + 3/4

The first and third of these yield to the further substiteion

v = u2 + 3/4 = x2 - x + 1, giving

-9 v
-27 dv and jrv-Idv.

The last is a standard form, so that leaves only the second.

For this we have a recursion formula

J (x2 + c)r
dx

n-1
+ (2n 3) f dx

c)n 2(n - 1)c (x2 + (x2 + c)n-

derived in Appendix A. This gives

f du 3 2 r du

2 (u2 + 3/4)2 2 3 u2 + 3/4 J u2 + 3/4

Combining these results and adding similar terms gives us

finally

x5 + 2 -1 + 7 log 1(x -I- I) I +
x + 4

J (x3 + 1)2 9 x+ I

x2 - x+ I

+ log 1(x2 - x + 1)1
12 arctan

2x - 11+ C.
13

736 78 (-3
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Problems

1. Evaluate each of the following

(a)j
1

dx
4x2 + I2x + 9

(b)
6x2 +r dx

2 6x2

x3
(c) f dx

x2 2x 3

(d) jr
dx

(x - 1)2kx - 2)

(e) jr
dx

(x2 - 4)(x2 - 9)

(f),(v2

x2

+ 2x + 3
dx

- 3x + 2

x2 - 2

+ I)(x

(

j
rx3 + 3

dx
x2 + 4

dx
1)2

( i)f 2x2 + 3x - I dx

(x + 3)(x + 2)(x - I)

(j)jr
x2 - 37

dx

x2 - x - 12

787
131
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(I) 1 X2
j (X -

x dx

1)(x - 2)

- 2x +
1)2(x2

3
dx

+ 4)

(m)
jr2x3 + x2 + 5x + 4 dx

x4 + 8x2 + 12

(n)f
X3

X2 - x I dx
+ 6x2 + Ilx + 6

(o) j x3 x2 + 2x + 3

(X2 2x + 2)2

p)
3x2 + Ilx + 4

x3 + 4x2 + x 6

(q)f
(x

3x3

()2(x2

(r) f
J (x2 1)2

dx

x(x2 + I)

dx

dx

dx

dx

2. Finish Problem10 in Section 3. namely

(a)jr
4t

(t2 + I)(t +

2u2 du,
1 - Lit+

or

dt,
1)2

738

t = tan 7.

788

= tan x,
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f 16t2
dt, t = tan 7 .

(t2 + 1)(t2 + 2t - I)( t2 - 2t - I)

(c)
f1 du,

(I - u212

or

2( 1 t2)2 dt,
(I - t2)3

u = sin x,

t = tan T.

3. (a) x4 + 4 can be factored in the form

(x2 + ax + b)(x2 + cx + d). Find a,.1), c, d and

evaluate f 4
dx.

x + 4

(b) Make a substitution to reduce

dxf x4 a4
to K f + 4'u4 du

and hence get a formula for this general integral.

769

139
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6. Integral Tables and Guessing.

One needs to develop skill in handling complicated

integrals but 95% of the integrals one meets can be found

in a good set of tables. The word "found" is used loosely.

No table will contain the integral

jr(x6 - 2x2 + 4)e-3xdx,

but a typical table will have fexdx, fx2exdx, and a

reduction formula for fxnexdx. Making the substitution

u = -3x and breaking the integral into three parts will

enable one to use the table.

You should spend some time getting acquainted with

your table, so that you know what to expect to find in it

and where to look for a given type of integral. Otherwise

you may spend more time hunting than you would in integrating

the function by other methods. One table, for instance,

does not give a reduction formula for

dx
J

x
n xz + az

but does give one for

dx

Jrx n (a + bx2)1/2

790
740
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Some tables give an extm.nsive set of integrals involving

ax' + bx + c and others give none of these at all,

expecting you to complete the square in all such cases.

At all times one should keep alert for short-cuts. In

Example 5-4, for instance, we can write

xs + 2 x3 2
dx x2 dx + dx

J (x3 + 1)2 (x3 + 1)2 (x3 + 1)2

and the first integral yields at once to the substitution

u = x3 + I. The second one must still be done by partial

fractions, but is somewhat simpler than the original integral

if the algorithmic method of Appendix A is used. Another

example of this type is

xildx

(X2 1)7/2

Ev.en if one can find a reduction formula for It it is

easier to use

U2 = x2 I, 2u du = 2x dx,

to get

(u2 - I)Su du

u7

which needs only a little algebra.

In Section 1 we spoke of "guessing" the result of an

integration and then checking our guess by differentiating.

741
7D
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Usually our guess is based on considerable knowledge

of the form of the answer, and the differentiating

determines the details, An example will show how this works.

Example I. jr(x3 - 2x2 + 4x - 2)e-2xdx.

Integration by parts (see Problems lb and g in Section 4) con-

vince one that jrx n e
axdx is of the form P(x)e" where P is a

polynomial of degree n. Adding several of these together,

we must have (or we "guess" that)

jr(x3 - 2x2 + 4x -
e-2xdx

= (ax3 + bx2 + cx + d) e-2X
C.

Differentiating the "answer" gives

- 2ax3 - 2bx2 - 2cx - 2d)e -2x.

a = ,

b = (3a + 2) =

(3ax2

Hence we

-2a =

+ 2bx + c

want

I,

-7b + 3a = -2,

-2c + 2b = 4,

-2d + c = -2,

giving

7
c = 4.(2b - 4) = -T,

d = 7(c + 2) = ;7;

f(x3 2x2 + 4x - e-2xdx
8
.1-(-4x3 + 2x2 - I4x + 1)e-2x

The easiest way to get

fea x bx + B corArib,x)dx

742
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is not to integrate by parts as in Example 4-4, or to hunt

for it in tables , but to assume that

feax(A sin bx + B cos bx)dx = e
ax(M sin bx + N cos bx) + C,

differentiate, equate coefficients of sin bx and cos bx,

and solve for M and N.

This technique if particularly good for combinations of

polynomials, eax, sin bx, and cos bx.
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Problems

I. Use the tables to evaluate the following

(a)
x2

r
dx

(2x2 - 1)3/2

(b)fx2 sin23x dx

x2(c)f dx
(2x - 1)3/2

(d)jrsin42x cos22x dx

2
(e)fdx

(2x2 - x - 1)3/2

2
dx

(2x - 1)3

(g)jte2X sin43x dx

x2
(h) jr dx

(2x2 - 1)3

(i)drx sec43x dx

x2(j)f dx
(x2 + 4)2

744
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2. Solve the following problems by using a table of integrals.

Section 2, Problem lb, d, h, i, I, n, o, q, r, s, u,

v, y, z.

Section 3, Problem la, b, e, g, i

Problem 3a, c, d

Problem 6, all parts

Problem 9, a, b, c, d, e, h

Problem 10, a, c

Problem II

Section 4, Problem la, b, c, g, h, i J. k, I, m.

3. Evaluate Jr(x4 - x)e-x dx by assuming a form for the

answer and differentiating.

4, ,Get a formula for

ax (c sin bx + d cos bx)dx

5. Assuming that

jrxeax(c sin x + d cos x)dx

find 0, q, r, s in terms of a, c, d.

6. What do you estimate to be the form of

f(ax2 + bx ec
hx sin kx dx?,

145, 75)
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7. Definite Integrals.

At this point we abandon the convention of using "integral"

to mean "indefinite integral". From now on "integral" will

have its original meaning, although we may still refer to a

"definite integral" for emphasis. An indefinite integral

will always be referred to as such.

So far our main interest in indefinite integrals

has been as an aid to the evaluation of definite integrals,

although we also used them in solving differential equations

in Chapter 9. The second form of the Fundamental Theorem

(Section 8-3) tells us that if F is an indefinite integral

of f over the interval [a,b] then

Jr f(x)dx = F(h) F(a).

a

.E21.912211!. 7/2

2 + sin de*

From Example 3-11 we have

7/2
I dO =

2 arctan
(I + 2 tan 0/2)

0
2 + sin A

7r/2

0
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Since tan(IT/4) = I and tan 0 = 0 we get

2
- -(arctan IT - arctan --)

2

13
7.77-"T-

3/7

If we use the form

2 arctan
2 - 2 cos + sin 6

T sin e

for the indefinite integral we run into trouble at 6 = 0.

This is not serious, for we can evaluate

lim
2 - 2 cos 6 + s i n 6 2 sin 6 + cos 6

64.0+ /T sin 6 /7 cos e IT

by L'Hospitalls Rule. A similar situation occurs in the

following example.

Example 2. fir
2

de = arctan
I + 2 tan e/2

0 2 + sin 0 /T 10

Now tan 1T/2 is not defined, but

and

6
lim tan 2 =
61T-

lim
1 + 2 tan e/2

/3 4
747

7
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and

lim arctan v = ¶/2.
v4.02

Hence we conclude that

Finally,

0

I m
f 'n' 2 + sin e

F(o) = jr

0

de =

2 + sin e
dO

2 rn n1 = 2n
L2 6J 3/5

is continuous at 0 = w (this follows from the argument in

Section 8-2), and so

21T
F(w) = lim F(0) =

04-n- 3i!

Notice that the function F(0) defined above is defined

for all values of 0, and is > 0 for 0 z, 0 since I > 0
2 + sin e

for all e.

Example 3. Proceeding as before, we get

J
2 + sin e

dO
2

1/.5

arctan

21.

I + 2 tan 0/2

2 1 1[arctan - arctan 1-- = 0.
VT J

By the comment above this is certainly wrong. We might

suspect that the trouble occurred when a went past I., since

148 79 8
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this point caused the complications in Example 2.

This is correct. When e varies

quantity arctan
I + 2 tan 6/2

varies continuously from Just

below 7/2 to just above 7/2,

and in doing so jumps from one

branch of the arctan curve to

another. (Figure 7-I). The

value of arctan 11/.5 arising

from e = 27 must therefore be taken

as 7/6 +

1-rom 7 c to 7 + c the

Figure 7-I

not as 7/6 but rather

7. This gives us the sensible answer 27//!.

Another way of regarding this case is that the function

2 arctan
I + 2 tan 6/2

/T VT

where arctan is restricted to the range (-7/2, 7/2) as

agreed upon in Section 7-3, is discontinuous at 6 = 7 and

hence is an indefinite integral only over an interval that

does not contain 7 (or 37, or -Ti , or etc.). We could

then proceed to evaluate jr
2.ff asjr

7 using the

0 0 7

technique of Exampie 2 on the limits 7.

Considerations like this are distinctly annoying,

especially whem using integral tables. All answers involving

149 7D



www.manaraa.com

Inverse trig functions, particularly arctan, should be

regarded with suspicion. For example

dx log
x2 + aaxe + a2 arctan

axJ
fat' + x4 4a3 x2 - axf + a2 2a3/7 a2 - x2

can be expected to cause trouble if the interval of integration

contains either a or -a, values of x at which the argument

of the arctan term becomes infinite.

In our examples so far we have obtained the indefinite

integral and substituted the limits of the integral. If any

substitutions are made in the evaluation of the integral,

however, we generally change the limits to agree with the

new variable and never go back to the originai variable.

This idea was introduced in Section 8-3.

Example 4. = Jr' dx.

0 (x + 2)/T:-77

This calls for the substitution of Section 3-III,

X = sin 6, VT777 = cos 6, dx = cos 6 de.

For x = 0 and x = I we have 6 = 0 and 6 = 7/2. So we get our

old friend,

f
n/2

J = I de.

0 2 + sin 6

The first step in integrating this in Example 3-11 was the

substitution t = tan 6/2. This gives the limits t = 0 and

t = tan 7/4 = I. So

J = jr dt.
0 t2 + t +

150 800



www.manaraa.com

The next substitution was u = t + 1/2, giving

3/2
J =

Jr1/2
du

u2 + 3/4

2 2u
= arctan 7

3 / 2

1/2

=
2 (arctan /7 - arctan

TT)

IT

3

What happens if we try this process on Example 3? If

we proceed mechanically we get t = tan 0/2, t = 0 when

0 = 0, t = 0 when 0 = 2w, and so

r2IT o

JO 7-777177 de = Jrn
dt = 0,

t2 + t + I

the same wrong answer. Here it is obvious that the function

t = tan 0/2 Is discontinuous at 0 = IT and so this substitu-

tion cannot be used over any interval containing w. From

this point of view the case of Example 3 will be examined in

the next section.
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In general, in evaluating definite integrals one must

be suspicious of the numerical substitutions, making sure

that the various functions used in the evaluation behave

properly over the required intervals.

The substitutions of limits as one proceeds with the

evaluation will generally simplify the writing of an inter-

gration by parts or a reduction formula, and sometimes even

the formula itself.

fl
Example 5, JO

x
7
e
X

dx.

We get a reduction formula for

Using

gives

JP'

xnex dx.

n
u = x ,

du = nx
n-I

dx

Ixn ex dx

dv = exdx,

v = e
x

= xnex
0

= e - n
j0
r

n-1
e
x
dx-nj

0
x

x
n-I

e
x
dx.

Write this as a recursion formula:

I

J
n

= e - nJ
n-I

J
0
= j

0
e
x dx = e - I.

. 7.: 152Le, 803
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Then

J
7

= e - 7J
6

= e - 7e + 7..6J
5

= e - 7e + 7.6e - 7.6.5J
4

=

= e(I - 7 + 7.6 - 7.6.5 + + 7.6.5.4.3'2)

= 5040 - I854e = .31.

Example 6. Definite integrals of the form

Jo
n/2

sin
m x cos

n
x dx

occur frequently. Consider

Jo
n/2

sinn

In Example 4-5 we got

jrsin n x dx

Now for n > I,

sin
n-1 x cos

- 7!(e - I)

K dx.

the recursion formula

=

x

I n-I
+

n - I j(Sin n-2 x dx.sin x cos x

n/2,
= 0,

0
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since sin 0 = 0 and cos n/2 = 0. So we have

n/2
sinnx dx =

n - I

n

n/2
sin

n-2x dx

as the recursion formula for the definite integral. This

is simple enough that we can write a formula for the

integral. Since

we have

(I)

Jo

fo

n/2 /2
sin x dx = 1 and I dx = w/2,

(n - I)(n - 3) I IT

n/2
n(n - 2) 2 7 if n is ever

sin
n x dx =

(n - I)(n - 3) 2

n(n 2) 3
if n is odd.

By interpreting definite integrals as areas we can apply

(I) to other useful integrals. Since sin x assumes the same

values in [w /2,1T] as in [0,n/2] so does sinnx for any n

(Figure 7-2), and so

Y=s sin x
tlo 31r/2 VT

fir/2s
nnx dx = sin

nx
dx, v 77 z

from which we get

: 14

4

(a)

Figure 7-2
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rn
JO

sinnx dx = 2 sinnx dx.

On the interval [w,2w],

the values of sin x are the

negatives of those on [0,w].

The same is true for sinnx

if n is odd (Figure 7-2(b))

but for n even the signs are

the same (Figure 7-2(c)).

Hence for n even

sinnx dx = 2

but for n odd

fOir
sinnx dx

= 4
Jr0

w/2

2w

v-siex
zn

(b)

Y -sex

2.1t

sinnx dx,

sinnx dx = O.

By comparing the graph

of y = cos x (Figure 7-3) with

that of y = sin x we conclude

similarly that

755

(c)

Figure 7-2

8 0 .3

Figure 7-3
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n/2
cos

n x dx = sinnx dx;

w
n/2

cos
n x dx = 2 cos

n x dx If n is even, otherwise 0;
Jo Jo

fo
2n

cos n x dx = 2
J0

cos
n x dx.

These methods are useful in various places. One appli-

cation is sufficiently general to Justify formal statement.

We recall that a function f defined on an interval E-a,ap

is even if f(-x) = f(x) and odd if f(-x) = -f(x) for

every x in the Interval.

Theorem i. if f is on [ -a,a] then
odd

and

r0
j_a f(x)dx = Jo f(x)dx

a

a

f(x)dx =

2 fo f(x)dx

0

Here either all the top terms in the three pairs of brackets

are to be taken or all -the bottom terms.

751
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Proof. The statements are obvious from a graph but we

shall give an analytic proof for variety. Putting u = -x

we get

0 a

f(x)dx = jr f(- u)( -du) = f(-u)du = jra
0

f(u)du.
a

Jr
0

This is the first half of the theorm. The second half

follows from

a 0 a

f(x)dx = jr
a 0

f(x..dxf Jr f(x) dx.a-
w/4

Example 7. If we should wish to find Jr x2 sin 3x dx
-7r/4

the results of Example 4-3 are unnecessary. Since x2 sin 3x

is an odd function we know that the value of the Integral is

zero.

Example 8. An integral like

r x3 + x +

4777 dx

can be separated into odd and even parts;

151 80
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I' x3 x dx +

-1 77-7-7 4777-7

The first is zero and the second is

dx.

1

2 dx = 2 log (x + (2 + 4)

)672.7-1-4 0

= 2 [log (I + /) - log 2]

Many

definite

veniently

= 2 log
1 iT

2 .9624.

problems leading to

integrals can con-

be done in terms

of parametric equations.

Examole 9. To find the

area of one arch of the

cycloid

x = a(0 - sin 0),

y = a(1 - cos 0)

we have

-.1)4 75$ 80&

Figure 7-4
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A =

= a 2

y dx

r2w
a(l - toss) a(l - toss) de

fo
2ir

(I - 2 toss + cos 2e) de

I ir

= a2(2w 7+ 4 7), using Example 6,

= 3wa2.

This technique requires

care, however. Given simply

a parametrized curve,

(2) x = f(t), y = g(t),

a < t < b,

it may not be true that

fy dx = g(t)f/(t)dt

represents an area. For in-

stance, (2) may give us a

curve like the one in

Figure 7-5. What we have in

mind when we write A =dry dx

159 8 {;

Figure 7-5
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is someting like Figure 7-6;

that is, (2) defines y as a

function of x over the

interval f(a) < x < f(b).

This will be so if f(t) is

strictly monotone in [a,b].

Then the function f has an

inverse function h, so that

t = h(x) on [f(a), f(b)1, or

on [f(b), f(a)] if f is

decreasing, and

I

Figure 7-6

b f(b)
g(t)f/(t)dt = Jc(a) g(h(x))dx

f(b)
y(x)dx.

760 8/.0
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Problems

I. Evaluate the following definite integrals. Do not use

tables of definite integrais.

(a)

(b)

(c)

(d)

( e )

(f)

(g)

fo

-1

jl0

fOn

jl
0

Fr

dx

arctan x dx

167 log x dx

cos e
I + sin e

cos e
I + sin 6

de

de

x3(I + x2)3/2dx

e-x cos x dx

1

(h) I

7177 dx
Ans.

1

log
4)/5

13 + 410 - .24:

(x2 - 4) 6

2. (a) The region in the first quadrant

bounded by the axes, the line

1

x = and the curve
x2 + I

is rotated about the x-axis. What

is the volume of the resulting solid?

761

811
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(b) What is the volume if the region is rotated

about the y-axis?

Answers. .fr( /T/8 + w/6), IT log 4.

3. (a) Find the area of an ellipse, using the parametric

equations

x = a cos 0, y = b sin O.

(b) Find the volume of the ellipsoid obtained by

rotating the ellipse about the x-axis.

4. Find the volume obtained by rotating the area in Example

9 about the x-axis.

Ans. 57r2a3.

5. The curves

x
2/p

Y

_2/p a2/p,
p > 01

have the general shapes shown in

the figure. They can be parametrized

as x = a cosPO, y = a sinPO.

We are interested in the area A bounded by such a curve

and the axes.

(a) A
I

I 2= Ta .
4

Why?

I

(b) A
2

= -2,
2

. Why?

(c) Compute A3 and A4.

.!;;44,762
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(d) Derive the reduction formula

Ap - I __E-- A
4 p I p -2'

for p > 2. Check itwitr, your answers to (c) .

(e) What can you say about the shape of the curves for

p = 100 and p = .01?
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8. Improper Integrals.

The integral

M

e-x dx

Figure 8 -I

has for its value the area of the cross-hatched region in

Figure 8 -I. This value, as we saw in Chapter 8, is a

function of M, F(M), and indeed we see that

F(M) = I - e
-M

.

Now lim F(M) exists, and is obviously equal to I; that is,
M4-0.

M
lim f, e- dx = I.

1,114.0, v

We summarize this situation by writing

rco
e dx = I,

and saying that the area of the region bounded by the x-axis,

the y-axis, and the curve y = ex is I. Notice that this is

an extension of the concepts of "area" and "integral". To

identify an integral of this new type we call it an improper

integral.

764 81,1
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In evaluating an improper integral we must go back to

its definition, as a limit of a proper integral.

Example I. fo

We start with

fom

Then

I + X2

CO

I + x2
dx.

dx = arctan M.

r Pmdx = I im . dx
JO M÷. JO

I + x2 I + X2

Example 2.

= arctan M = .

cc°
./o

+ x2
dx

r
1

dx = log (I + x2)
Jo

4- x2

= 7 log (I + M2) - O.

Hence

Jr"'0 I + x2
dx = urn

17 log (I + H2) = co,

765
4. 81:i
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If the limit exists and is finite, as in Example I, we

say the integral converges, or exists. In a case like

Example 2 we say the integral diverges or does not exist.

We also apply the same terms to an integral like

cos x dx = lim
m

sin M
M.4.

which does not exist in any sense. If w6 wish to distin-

guish between the two types of divergence we can use the

phrase "divergent to infinity" for the first kind.

a

We leave to the reader the definition o -f jr f(x)dx.

The doubly infinite integral f(x)dx is best treated

by breaking into two single improper integrals,

ra
co

f(x)dx Jr
a

f(x)dx,

for some convenient value of a.

A second type of improper integral arises from a dis-

continuity of the integrand at one end of the interval.

Here again we define the improper integral as the limit of

a proper integral.

766 816
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Example 3.

The integrand is defined only on [0,1) and not on [0,1]

as we required for our theory in Chapter 3. So we take

an interval [0,11], where h < I, and let h I; i.e. take

fo

lim
Tr

dx = lim arcsin h = 7 .
1141- u 1777 h-+1-

This is our definition of the improper integral
1

dx. This type of improper integral is not as
4-7-77

easy to recognize as the first type, and one must always

be on the watch for discontinuities of the integrand in

the closed interval of integration.

2

Example 4. jr
1

x
-3

dx.
-

One is apt to write carelessly,

r2
I

x
-3 dx = -7 x

-2 1 , 1 3-g +7-7- 7

which is false. This is an improper integral because of

the discontinuity at x = O. Its value, if any, is

I4.0-
'm jr

h
-3 dx + jr2

11

-3
-1 x

1(.4.0+
k

dx

767 817
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(--L- + I 1 + lim (-I + I

2h2 7/ 10'0+ 8 2k2/

The integral converges only if both

limits exist. In this case neither

limit exists, so the given improper

integral does not exist.

Example jc
I

dx.
x2X - x

Using partial fractions,

SO

X 2 - X

-1

X-3

r.
r

2
lim

J2
( I

x I

M
- dx

.1 -
I

x2 - x
dx =

Figure 8-2

M

= lim [log(x - I) - log xi
M4-0, 2

= lim [ log(M - I) - log M + log 2].
M+0,

Now neither log(M I) nor log M converges as M co, so we

are at first inclined to compare this to Example 3 and say

that the integral does not exist. Here, however, we are

not interested in either of these two functions as such but

in the function log(M - I) - log M. As in Problem 4(g) of

818
16$
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Section 10-4 we find

lim (log(M - I) - log M)

M -
log

M

I

= lim
4.0*

= lim log (I - > = log I = 0,
M4423

so our integral does converge to the value log 2.

In evaluating an improper integral by integration by

parts we can carry out the appropriate limiting processes

to the integrated part as soon as we obtain it.

Example 6. The gamma function, r(x), is defined by

co

T(a) = j
0

t
a-le -t

dt

for all values of a for which the integral converges.

(Also for some other values of a, by more advanced methods.)
CO

We have I'm = e
-tdt = I. If a is an integer greater

than I we apply integration by parts:

u = to -1, dv = e
-t dt,

du = (a - 1)t
a-2

dt, v = -e
-t

,

769 g.i" 9
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f(a) = -to
-I

e
-t

0

co

+ (a - I) jr t
a-2

e
-t

dt

= -lim M
a-I

e
-M + 0 + (a - 1)f(a - I).

M4-00

By Section 10-4, lim Ma -Ie = 0, so we get the recursion
M÷co

formula

f(a) = (a - l)f(a - I)

if a is an integer greater than I. We shall see in a later

chapter that the same formula holds for all a > I.

Successive application of the recursion formula gives

f(a) = (a - I)(a - 2)r(a - 2)

a - I)(a - 2) ... 2.1

Thus the gamma function is an extension to real values of

x of the factorial function defined only for integer values.

The effect of a substitution on a definite integral may

be to change it from proper to improper or vice versa. A

simple example is

110
820
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dx =
fOl

sine do,

where x = sine. The first integral is improper and the

second is not. What we are actually doing here is the

following

fh
sine dOlim

h4.1- ,

dx = jr0

vl - x2

/ 2

.)(
sine de.

The last step is valid because j04) sine de, as a function

of 0, is continuous on the closed interval [0,7/2] by virtue

of the argument of Section 8-2, since sine is unicon on

[0,7T/2].

The substitution in the other direction, 0 = arcsin x,

is a little more subtle, since, starting with a prover inte-

gral, we may not notice that it has become improper. The

critical factor is the differential dO = dx/l - x2 = dx/cose,

which is not defined at x = I or 0 = 7/2. Whenever this

occurs the possibility of an improper integral must be con-

sidered.

m 821
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For another example of what can happen consider

-
xe

x
dx =

fol

- log y dy

under the substitution y = e x, x = -log y. Here an

improper integral of one type is changed into one of the

other type. We leave to the reader a careful analysis of

Just what is involved in this change.

It should now be clear that the troubles we had in

Examples 7-2,3,4 arose from converting the proper integral

l)( 7-7777177 de

into an improper integral by the substitution t = tan7 .

This is one of the drawbacks of this substitution.

A good set of tables contains many definite integrals,

proper and improper, that cannot be evaluated by the methods

of elementary calculus. Even for some common complicated

cases that can be so evaluated a listing of the integral can

save a lot of work.

112 8 2
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Problems

I. Evaluate the given improper integral in case it converges.

(a)

(b)

(c)

(d)

( e )

( f )

(g)

(h)

J-3
x dx

0 ./777777

J/mil dx

0 (I - x)2

JW

2

0

J0

log xdx

e
-hx sin wx dx

Jr1
dx.

dx

-2 ?/777-1

Jr
dx

.2
x og x

2. (a) If one attempts to find the

adjacent cross-hatched area

by horizontal strips he is led

to the integral

dy
f
0

773

8 2 =3

dy.
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Evaluate this integral without using tables,

indicating all the limiting processes involved.

(b) As a check on your answer find the area by using

vertical strips.

3. (Refer to Problem 2 in Section 7)

(a) Find the volume of the solid obtained by

rotating the region in Problem 2 above

about the x-axis.

(b) About the y-axis.

4. Do the same as Problem 3 using the curve y = e-
ax

in place of y =

5. Is

rl

JO

X 2 +

x log x dx an improper integral? What is its value?

6. As stated in Problem 4 of Section 6-5 the weight of

a body at height h is

w(h) = w(0)
R2

(R + h)2

P .)

714
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where w(0) is Its weight at the surface, and R is the

radius of the earth. How much work is done in

lifting a one pound weight

(a) One mile,

(b) A thousand miles,

(c) To the moon,

(d) To infinity.

775
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9. Numerical Methods.

The methods of the previous sections, extensive and

useful as they are, do not always work, as was pointed out

in Section I. Even when they work they are not always

preferable.

Example I. To find the value of

rl
J = J

dx
O 3

X + 5

we can look up the indefinite integral in tables and sub-

stitute limits to get

I

(I) J = C log
013 + 1)2 2 -

25

arctan
IT

Y7T - /T /7 6/T J

This is the exact value of J but it isn't of much use as it

stands. To use it to estimate J to 20 (2 decimal place)

accuracy would be an annoying job, requiring the use of

tables of cube roots, logs, and arctans, or some form of

automatic computer. if we had started with the integral

K = dx

none of our indefinite integral methods would have worked
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at all, for the indefinite integral of (x3
5)-1/2

not an elementary function.

On the other hand, f(x) = (x3 + 5)-1 is easily shown

to be a concave function (f"(x) < 0 on [0 1]) and so

the method of Section 10-2 can be applied. Using n = 2

and the values of f(x) from

Table I (obtained with a slide

rule), gives

T = .1893, M = .1918,

M - T = .0025.

So the approximation

J = .1905 = .19

0

1/4

1/2

3/4

1

f(x)

.2000

. 1992

. 1953

. 1844

. 1667

TABLE 1.

is in error by less than .002. This is a much easier job

of computation than the evaluation of (I), to say nothing

of the derivation of (I) - by partial fractions - if our

tables aren't handy.

Furthermore, we can evaluate K by simply taking square

roots of the values of f(x) in Table I and repeating the

simple computations of T and M.

Problems 5 and 6 illustrate other troubles that can

arise in getting a numerical approximation to a definite

integral through the use of an indefinite integral.

4 777
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For direct numerical evaluation of a definite integral,

"numerical quadrature" as it is commonly called, we cannot

hope always to have a convex or concave integrand, or even

to be able to divide the integral into pieces in each of

which the function is convex or concave. What is needed is

an error bound for the trapezoid rule or the midpoint rule

that applies to all unicon functions, or at least to a very

large class. The following theorem gives such a bound for

the trapezoid rule. Its proof is given at the end of this

section.

Theorem I. Let x
0

= a x
n

= b, xi - x;_1 = h, i = I, n.

If f, ft, and f" are unicon on [a,b] then

fa

where

b

f(x)dx = h 1

r 4(x ) + f(x ) + f(x
2

) + + f(x
n-I

)

L -

+ ( + Rn,

b a 2
Pn = h f"(E), a < b.

,:xample 2. We wish ro compute

We find

where

R
n

= h2f"(E),
lz

f"(E) = (E2 - 2E +

-;!

178

2

x
-I

e
x dx accurate to 2D.
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To find an upper bound on If"(01 for I < E < 2 a

crude method is to take the maximum of each factor separately.

This gives

If"(E)I < 2 x I-3e2 < 15.

For a little more finesse lump the rapidly changing factors,

E
-3 and e E

, together and find the maximum of g(E) = E-3eE.

Since

g'(c) = ( 3)E-4eE

is negative in [1,21 the maximum occurs at E = 1. This gives

the better estimate

If"(01 < 2e < 5.4.

It is not worth the work involved to get a still lower bound

by differentiating the whole function f"(E).

Using this bound for If"(01 we see that

IPnI .5 h2.

Hence h = .1, or n = 10, would give an error of < .005, in-

suring 2D accuracy. Computation of the trapezoid rule for

this case gives 3.06066. Since the correct value of J to 8

places is 3.05911654, the actual error is .00154, showing

that the computed bound is not a gross overestimate.

119
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Even if the integrand is convex this method has the

advantage of giving a bound for the value of n before any

computation is done. This is important when high accuracy

is desired, for high accuracy generally requires a large

n, with a corresponding increase in roundoff error. We

may find that n must be so large that the roundoff error

Would be greater than the required accuracy, in which case

some more accurate method than the trapezoid rule would

have to. be used.

One such method is Simpson's Rule. Just as in deriving

the trapezoid rule we approximated a portion of the graph

by a line, i.e. a linear

function L(x) = a + bx,

so here we approximate

a portion of the curve

by a quadratic function

Q(x) a + bX + cx2,

Since Q involves three

constants we can make it

go through three points,

P0'
P
I'

P2'
on the graph,

as in Figure 9-1, Let these points be P (x ,y ), i = 0,1,2,

where y1 = f(x1) and x1 - x0 = x2 - x1 = h.

Figure 9 -I

780
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To get the area under the parabola it is helpful to

change axes by the substitution u = x - x
1'

to the case

shown in Figure 9-2.

in the new coordi-

nates the equation

of the parabola is

still a quadratic,

y = au2 + au + Y,

so the area under

the parabola is Figure 9-2

h

A =
r

J-h
2 3

+ *lau2 + au + v)du = 7 ah zyn.

Now the parabola goes through the three points (-h,,,0),

(0,y1), lh,y2), so we must have

ah2 - ah + Y = yo,

Y = Y1,

ah2 + Oh + Y = y2.

Adding the first and third of these gives

2ah2 + 2Y = y0 + y2,

and it is now easy to see that

4h
A = 7 (y0 + y2) + 7-- yi = (y0 + 4y1 + y2).

781
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Referring back to our original curve this gives us

the approximation,

Jxx2 f(x)dx = .3. [f(x ) + 4 f(x ) + f(x
2

) ] .

0

To get Simpson's Rule we successively increase the sub-

scripts by 2 and add the results, getting

b

(2) jr
3a

f(x)dx [f(x ) + 4f(x
I

) + 2f(x
2

) + 4f(x
3

)

+ + 2f(xn-2) + 4f(xn_i) + f(xn)] .

Of course n must be even to enable us to pair off the sub-

intervals.

One can derive a bound for the error In Simpson's Rule,

analogous to the one for the trapezoid rule given in

Theorem I. The derivation is considerably more complicated

than the proof of Theorem I given In this section. We

therefore merely state that If Rn is the difference of the

left and right sides of (2) then

b - a 4 (4)
R
n
= -7-8= h f (E), a < E < b,

provided f,f1,...,f
(4) are all unicon on Ea,b3.

7 82 '8 3 2
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To compare the accuracy of Simpson's Rule and the

trapezoid rule apply this formula tG Example 2. We find

that

f(4)(O = (E4 - 4E3 + 12E2 - 24E + 24)E-5e .

As before, E
-5

e has maximum value e at E = I, and the

polynomial has maximum value 9, also at E = I. (This is

a little problem in finding extrema). So, for h = .1,

IR
n I

I <
I (.I)49e < .000014,

a gain in accuracy by a factor of 350. The Simpson Rule

approximation to J computes to 3.0591200. The actual error

is thus .0000035,egain comparable to the computed bound.

It must be admitted, however, that in many cases f(x)

is so complicated that it is well nigh impossible for one

to compute its fourth derivative and get a bound for the

absolute value. (See Example 3 in Section 12-4 for

instance). In such cases one is usually satisfied to get

several Simpson Rule approximations, successively doubling

the number of subdivision, until two are obtained that

differ by less than the permissible error. A flow chart

for a program of this kind Is shown in Figure 9-3.

783 ;8
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,b,E,MAX

SUME f(a) + f(b))
SUMO fOb a

n4---i rln<zx n > MAX

SUME SOME +. 2 % SUMO
SUMO( O

K(--1/2
KE--K+1 K > n

"EXCESSIVE
ROUNDOFF"

, SUM SUMA

F
I SUM0E-- SUMO+ 4(a+ K xh)

I SUME---(h/6) x(SUME + 4x SUMO)

T(n )
F

( 1 SUM SUMA 1 <

3, 4 F
SUMA SUM

h/z

Figure 9-3
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By summing separately on the even and the odd points we

can perform an efficient process of doubling the number

n of intervals without unnecessary computation. MAX is

a limit on the number of subintervals, imposed by round-

off accumulation, as in Figure 2-8 in Chapter 10.

The numerical evaluation of improper integrals can

sometimes be done fairly directly, but for efficient

computation one usually looks for ingenious ways of sim-

plifying the work. Some of the possible attacks are

illustrated in the following example.

Example 3. J = x-1 e-x dx.

(a) Easiest method. The function defined by
CO

E
I

(t) = Jr x-lex dx is known as an "exponential integral"

and is tabulated. J = E
I

(1) = .219383934.

and

(b) Direct method.

M

x
-1

e - xdx = j
1

x
-I

e
-x dx + x

-1
e
-x

dx

-1 -x
x e dx < J

00

M
-I

e
-x dx = M

-1 x
(-e )

785 8 3

CO

M
= M-1 e-M .
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If we want to approximate J with error < c we can choose

M so that M
-I

e
-M < c/2 and then take a numerical approxi-

M
-

mation of jrI x
-I x

e dx of error < c/2. For c = 5 x 10
-3

,

M = 5 will do; for c = 5 x 10-5 we need M = 9.

(c) Transform into a proper integral. The substitu-

tion y = ex, x = -log y changes J into

-1

reJo log y dY'

If we define I/log y to be zero when y = 0 then the function

is unicon in the interval and this is a proper integral.

There will be trouble in integrating it by either the

trapezoid rule or Simpson's Rule, however, since even the

first derivative becomes infinite as x 4- 0+. This does not

mean that these rules will not work but only that they will

converge slowly as n increases. Taking this into account,

method (b) is probably preferable.

(d) Integration by parts. In addition to its use to

find indefinite integrals, integration by parts is a fine

tool for changing integrals into hopefully more convenient

forms. Apply it to fm x
-1

e
-x dx, with

u = x-1, dv = e
-x

dx,

du = -x-2 dx, v = -e x

in
8 3 G
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We get

I -1e -xdx = -x
-1

e
-x

= M-1 e-M

CO

M
im

CO

CO 2 x
x e dx

2 x
x e dx.

Applying the same upper bound argument as in (b) gives

2
x
-2

e
x

dx < Jr

co

M
2
e xdx = M e

M
,

a smaller error than before. We could now, for instance,

get the error less than 2.5 x 10-3 with M = 4 instead of

M = 5.

The study of improper integrals is full of various

tricks of this kind. An expert at integration has a large

bag of them and a good intuition as to which ones to try

on any given problem.

711
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Proof of Theorem I.

The following proof illustrates another interesting

application of integration by parts,

Integrate jrc f(x)dx by parts, using

u = f(x),

du = f'(x)dx,

dv = dx,

v = x + p,

the constant p to be determined later. This gives

fc
d

f(x)dx = (x + p)f(x)

Now repeat the process, with

u = f'(x),

du = f"(x)dx,

giving

d

(3)

_ jr (x p)ft(x)dx.

dv = x + p,

IV = - 7 x 2 + px + q,

f(x)dx = (x + p)f(x)
d

c

in 838

d

2 px + q)f'(x)
c

d
() x2 + px q)f"(x)
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We wish to choose p and q so that the terms involving f'

drop out. This will be so if x2 + px + q is zero for

x = c and x = d; that is, if

x2 + px + q =
2
- (x - c)(x - d).

This gives p = - (c + d), q = cd, and (3) reduces to

(4)
fd

f ( x ) d x = ( d - c ) [ f ( c ) + 2 f (

d

(x - c)(d - x)f"(x)dx,

(The factors in the last

integral are written this

way to make them both

positive). The form of

the function (x - c)(d - x)

is shown in Figure 9-4. We

find that

(5) fc

Figure 9-4

d (d - c)3
(x - c)(d - x)dx

6

Now apply (4) successively to the cases c = x0, d = x

c = x
1,

d = x2; ; c = x
n-1'

d = xn; and add the results.

789
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We get

fa

b

where

f(x)dx = h
2
-4(x

0
) + f(x1) + + f(x

n-I
) + ,4(xn)]

n fx.
1

R
n

= - 7'
Jrx.

(x - x1 -1)(x1 - x)f"(x)dx.
1=1 1-I

To write R
n

as one integral

define a function 0 on [ast)]

by

Qn(x)=(x-x.1 )(x.--x )
-1 1

if x.
1-1

< x < x..

+ R
n'

The graph of 06 is shown in

Ficure 9-5. Then we can write

b

R
n

= -7
I jr

a
0
n
(x)f"(x)dx.

Figure 9-5

For the next step we need the Mean Value'Theorem for

Integrals, which will be proved in the next chapter. It tells

us that since Q
n
(x) is always > 0, and f" is continuous,

b b

Q
n
(x)f"(x)dx = f"(C) dr

a
0
n
(x)dx

for some in [a,b].

isu 190
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Now

jrb n

o I]n(x)dx = (x - x. )(x. - x),,x

i=1

h3
= n -6 ,

from (5), and nh = b - a. This gi.ves us the reouired

result,

= h2f"(E),R
n

a < < h.

1

791
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Problems

I. (a) Write a flow chart to compute the trapezoid

rule .ipr.roxima.ion to a given integral when the

number n of subdivisions is specified.

(b) Write a program from your flow chart.

2. For the function f(x) =
1

I + x2

(a) Show that f"(x)I has its maximum value in [0,1]

at x = 0.

(b) Find n so that for h = 1/n, 47412 max if"(01 < 105

for E in [0,11.

(c) Using this value of n and your program from

Problem I, compute it to 4D.

3. (a) Write a flow chart for the Simpson Rule approximation

when the number of subdivisions is specified.

(b) Write a program from the flow chart.

(c) Use your program to find

192
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10

log 10 = Jr dx

correct to 5D.

4. (a) Make a program from the flow chart in Figure 9-3,

or some modification of it.

9

(b) Use your program to compute f x
-le -xdx

with error < 3 x 10-6.. From this and the results

of Example 3(b) compute E1(1) and compare with

the value given in (a).

5. (a) As in Example 7-5, show that

fl

xl°e-x dx = 3628800 - 9864101e-1
0

What is he value of the integral correct to 2D?

.8
(b) How would you find xio e-xdx correct to 2D

0

us'ng only a 5D table of ex?

6: Consider the integral

1

x2 - 2.4682x + 1.5230

193
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where

the

Show

(a)

the coefficient

constant term

that:

If 1.5230 is

J = 1000

has

also

log

of

been

exact'then

x is known

rounded

x - 1.2341

to be exact but

off from 8D. --

- /MIT x lo-31

212787 x - 1.2341 + /27871 x !o-3

(b) If 1.5230 was rounded off from 1.52300281, then

J =
1

x - 1.2341

(c) If 1.5230 was rounded off from 1.52300450, then

J
10000 arctan x

1.2341
.0013

(d) How would you approximate J to 3D?
0

7. Problem: To compute 4 = Jr ti/2e-t dt to 5D
0

accuracy. Because of the square root, leading to

derivatives that become infinite as t 0 +, direct

application of the trapezoid or Simpson Rule is

inadvisable.

194
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(a) By a simple substitution reduce the integral to

Jr
2u2 e-u2 du.

0

(b) By integrating by parts, show that

dro
0

2u2 e-u
2 du = f e-u

2
du.

(c) Using

co co

e-u
2

du < )(
u

e
_u2

du,

show, by evaluating the latter integral, that

"3 .5

Z
e-" du < 10

-6
.

3'5 2
(d) Evaluate f e-u du numerically with error

0

< 4 x 10-6 and so determine r(2) with error

< 5 x 10-6.

8. Prc S and 4 of Section 10-2 suggest that a good

approximation to an integral might be T(T + 2M)

where T and M are the trapezoid and midpoint approx-

'mations. Shori that this is just Simpson's Rule.

9. Prove that Simpson's Rule is exact if f is any

polynomial of degree at most 3.
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Appendix A

ALGORITHMIC TREATMENT OF PARTIAL FRACTIONS

The application of Theorem I of Section 5 to a given

rational function P(x) /O(x) requires that 0(x) be factored

into powers of linear and quadratic factors. Can this

always be done, and, if so, how? The answer to the first

question is "yes", by virtue or the Fundamental Theorem

of Algebra which says that every polynomial equation has

a root (possibly complex). The proof of this theorem is

a topic for more advanced mathematics. Assuming its truth,

one can show that a factorization of the form in Theorem I

is always possible, the linear factors arising from the

real roots of 0(x) = 0 and the quadratic factors from the

complex roots.

The second question, "How do we carry out the factoring?",

has several answers. The most direct method is to find all

the roots of Q(x) = 0, with their appropriate multiplicities.

The real roots can be determined by Newton's Method, or a

modification of it to take care of the multiplicity of the

root if any exponent p,q,... is > I. There are other similar

methods for finding the complex roots, and hence the quad-

ratic factors, but even a simple case like Q(x) = x6 - 3x5 + 20,
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which has two linear and two quadratic factors, is a major

job without an autcmatic computer. Fortunately the factor-

ization appears automatically in many problems- for instance

the method of Section 3-17 applied to

cos 2x
J 2 + sin x + cos x

gives directly

dx

21-4 - 12t2 + 2
dt.

(t2 + 2t + 3) ( t2 + 1)2

Let us assume, then, that this numerical work has

already been carried out and O(x) is factored. Notice that

the conditions of Theorem 1 do not require that the quad-

ratic factors have complex roots but only that any pair of

indicated factors are relatively prime. For .example,

(x2 - 1)3 could be taken as one of the parts of the denomi-

nator provided neither x - I nor x + I was a factor of any

other part. Or one could carry x2 + 3x - 5 along as a single

factor instead of breaking it into x + 3/2 + /T7/2 and

x + 3/2 - /77/2. This is often convenient.

We give the details of an algorithm that simultaneously

proves Theorem I and computes the constants A,B,C, etc. The

algorithm applies to a P of any degree, but the computations

797
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are simpler if the degree is first lowered to less than

that of Q. There are two kinds of steps in the algorithm,

corresponding to the linear and the quadratic factors.

Step I. If x + a is not a factor of 00(x) then for a

given P(x) there is a unique constant A and a unique poly-

nomial R(x) such that

(I)
P(x) A R(x)

(x + a)P00(x) (x + a)P (x + a)P-I0
0
(x)

Proof. Clearing fractions, (I) becomes

(2) P(x) = A00 (x) + (x + a)R(x).

Divide 00(x) and P(x) by x + a, to get

(3) 00(x) = (x + a)S(x) + m,

(4) P(x) = (x + a)T(x) + n.

Substituting in (2) and collecting terms having x + a as a

factor gives

(5) (x + a)[T(x) - AS(x) - R(x)] = Am - n.

Now the right-hand side is a constant and the left-hand side

is divisible by x + a. Equality is possible if and only if

both sides are zero. Hence (2), and therefore (I), holds
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if and only if,

(6) A = n/m, R(x) = T(x) - AS(x).

Division by m is possible because x + a is not a factor of

0
0
(x). this implies that m # 0.

Step I
involves three major compt.+ational steps, the

divisions by x + a in (3) and (4) and the forming of R(x)

in (5). The divisions can be done by the following simple

algorithm (essentially the same as "synthetic division").

If

and

Then

becomes

or

H(x) =b0 xn+b1 xn-1 + + b b

K(x) = c
0
x
n-1 ++ c

1

x
n-2 + cn-1.

H(x) = (x + a)K(x) + r

c
0

= b0,

c. + ac.
I-1

= b1,

c. = b
1

- ac. -

r = b
n

- ac
n-1'

199

4$

= I, n-1,
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This is the sinWle loop

shown in Figure A-I.

We leave to the reader

the construction of a flow

chart for the computation

of R(x) = T(x) - AS(x) .

Having carried out

ENTER

Co bo

i, 4 1 >n
+F

I aci,-1

Figure A-1

EXIT

Step I, if p-I ' 0 we proceed to treat
R(x)

-(x + a) D I 0
0 (x)

the same fashion. That is, we let P(x) R(x), p p-I

in

and apply Step I again. Note, however, that we do not have

to recompute S(x) and m. This gives the flow chart in

Figure A-2.

Finally, consider the true

situation, where the denomi-

nator has the form

(x + a )

pi
(x + a

2
)

P2

(x + a
m

)

P
mQ

*
(x),

where Q *(x) is the product of

ENTER

I Compute 500011 1

p = 0

F

EXIT

Compute T (X), n
A <--n/m
P(x) T(X) A % S(X)

P, A

1
the quadratic factors in Theorem I. Figure A-2

800
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To handle this we start with

a = a P = p1, Q
0
(x) = (x +

and apply Figure

removed we let

a = a2,
P

A-2.

p2,

When

00(x)

all

= (x

the

+

a
2

)

P2
" .(x + a

m
)

Pm
-Q-... (x)

factors x + a
I

are

a
3

)

P3
...(x + a

m
)

Pm
0 (x),

and proceed. This gives us Figure A-3. Of course all the

polynomial algebra in

these flow charts must

in turn be broken down

into algorithms on the

coefficients, as we did

for division by x + a

in Figure A-1.

Example 1.

x5

(x - I)(x + 1)3(x2 + I)

POO ,Q(x),a, ,arn Pi , Prn

40(X)(---Q(X) I

4,

r> m EXIT

ar
PfPr
Q0(X)(7---Cio(X)/(Xta)?

I FIGURE A -2 I

Figure A-3

It is better to work on the most complicated factor first,

so as to make Q0(x) as simple as possible.. So we take

I. a = I, p = 3.

0(x) = x3 - x2 + x I = (x 1)(x2 - 2x + 3) - 4;

S(x) = x2 - 2x + 3, m = -4.

801
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P(x) = x5 = (x + ;J44 - x3 x2 - x + I) - I.

T(x) = x4 x3 + x2 - x +

A = (-1)(-4) = p
4 '

n = -I.

x4 - x3 x2 - - 4.(x2 - 2x + 3)

9
4 Xs.

3
")<." )( T.
4

1 3 9 I
II 13,

2 = x4 - x- + Tx- - + T - (x + 1)(x3 - 2x2 +
4 x T""

7

13
A = (7/2)/(-4) =

7

,

R(x) = X3 2x2
11 - 7

3. P(x) = x3 - 9 2
1TX

+ 2-(x2
8

3 9 2= X --X
8

2x + 3)

+ x -
5

$ , 15
x - = X I)(X2 17X 25)Tr- Tr- 7"--

15 17 25 Tr(x2= (-15/4)/(-4) = T7, R(x) = x2 - Tr+ Tr- - (x- - 2x + 3)

I

(X-
9 4x* + 5).

4. a = -I, p = I.

Q0(x) = x2 + I = (x - I)(x + I) + 2;

S(x) = x + 1, m = 2.

P(x) = ex2 - 4x + 5) =
2

r(x - I)(x - 3) +

A = (2/16)/2 = 7, R(x) = 7(x - 3) - r(x + I) .

802
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So

x5

(x - 1)(x + 1)3(x2 + I)

I I 7 I , 15 1

4 7(X 1)3 (x + 1)2 I ° x + I

x - I

1

4 x2 + I

Step 2. If x2 + ax + b has no factor in common with 00(x)

then for a given P(x) there are unique constants A and B

and a unique polynomial R(x) cuch that

P ( x )

(x2 + ax + b)P00(x)

Ax + B R(x)

(x2 + ax + b)P (x2 + ax + b)P-100(x)

Proof. The method is essentially the same as in Step I, the

only complicating factors arising from our now having two

constants, A and B, to find. As before, we start with

P(x) = (Ax + B)0
0
(x) + (x2 + ax + b)R(x),

'?) Q0(x) = (x2 + ax + b)S(x) + ex + f,

(8) P(x) = (x2 + ax + b)T(x) + gx + h.

From these, corresponding to (5), we get

(x2 ax + b)(T(x) - (Ax + B)S(x) - R(x).)

= eAx2 + (fA + eB - g) x + fB - h

= eA(x2 + ax + b) + (fA + eB - g - aeA)x

+ fB - h - beA,

803
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or

(x2 + ax + b)(T(x) - (Ax + B)S(x) - eA R(x))

= (fA - ae'. + eB - g) x - beA + fB - h.

Now the same argument can be used as in Step I. The left-

hand side is divisible by the quadratic x2 + ax + b but the

right-hand side is only linear. Hence both must be zero,

giving

(f - ae)A + eB = g,

-beA + fB = h,

(9) R(x) = T(x) - (Ax + B)S(x) eA.

The first two equations have the unique slution

(10) A = (fg - eh)/A, B = (fh - aeh + beg)/A,

A = f2 - aef + be2,

provided A 0 0. We have therefore only to prove the'

A # 0 to finish our proof of Step 2,

Now, from (7), e and f cannot both f..e zero or x2 + 5x +

would be a factor of o'
If e = 0 then A f2 0, So

suppose e / 0. Then A can be written 35

...,1804 85
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If A = 0 then -f/e Is a root of ax + b = 0, and

x + f/e is a factor of x2 + ax + b. Rut, iigain from (7),

x + f/e would then be a factor of 0
0
(x), since

ex + f = e(x + f/e), contrary to the assumption that

x2 + ax + b and 00(x) have no common factors. Hence in all

cases A # 0 and Step 2 is valid.

The major computing steps in Step 2 are similar to

those in Step I, namely the two divisions by x2 + ax + b

in (7) and (8) and the multiplication by Ax + B in (9).

Algorithms for these are similar to the ones in Step I but

involve two multiplications per step instead of one. Hence

Step 2 takes abou' twice the arithmetical work of Step I,

plus a little more for the computation ' A amid B in (10).

Since it takes care of a quadratic factor it is therefor,

about equivalent to Step I in the amount accomplished per

given amount of computation.

Details of these algoritlis and the corresponding flow

charvs for Step 2 are left to the reader.

Example 2. Taking the function from Example 5-4 we do the

quadratic part first. Usually one reserves Step 2 until the

805
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function has been simplified as much as possible by Step

f(x) =
x5 + 2 x5 + 2

(x3 + 1)2 (x2 x + 1)2(x + 1)2

I. a = -I, b = I, p = 2.

yx) = x2 + 2x + I = (x2 - x + I) x I + 3x;

e = 3, f = L, S(x) = I; A = 9.

P(x) = x5 + 2 = (x2 - x + 1)(x3 + x2 - I) - x + 3;

g = -I, h = 3, T(x) = x3 + x2 - I.

A = ;-9)/9 = -I, B = 6/9 = 2/3.

R(x) = x3 + x2 - I
+ x -2/3 + 3 = x3 + x2 + x + .

2. P(x) = x3 + x2 + x + 4/3 = (x2 - x + 1)(x + 2) + 2x - 2/3;

g = 2, h = -2/3, T(x) = x + 2.

A = 2/9, A = 4/9.

R(x) = x + 2 -
2 4 6 7

- - 7 = 7x + 7
9

We have now competed all Steps 2 and are left with

lx + 8

7 (x + 1)2

It LI; easier to abandon the algorithm now and do this as

7(x + I) + I 7

(x + 1)2 x + I (x + 1)2

806 856
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We have, therefore,

x5 + 2 1 -9x + 6 2x + 1

(x3 + 1)2 7 (X2 - x + 1)2 x2 x + I (x + 1)2

7

x + I

We need just one thing to complete the method of partial

fractions and that is a reduction formula for the integra-

tion of the terns with the multiple quadratic denominators.

As is shown in ,_xample 5-4 these can be reduced to the one

critical case

Jn = J
1

dx
A c I 0.

(X2 + C)

As usual, we use integration by parts, taking

u - (x2 + C)-°

du = -2nx(x2 + c)-
n-I

This gives

dv = dx,

V = X.

Jn = x(x2 + c) n + 2n J62(x2 c)-n-, dx

= x(x2 + c) n + 2n0(17.(x2 + c) - cj(x2 + c)-n-1 dx

+ 2n(J
n

- cJ n+V.

801
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Hence

J
n+1

Replacing

=

n

1

1 x +

us

1

(2n

what

- I)J
n

we want:

2nc

by

(x2 + c)n

n-1 gives

dx
jr( x2

+

c)n

(2n

2(n

3)

- 1)c

I

(x2 +

dx

c)n-I

- f
(x2 4. C)n-1

;: 808
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Chapter 12

APPLICATIONS OF INTEGRATION

I. Cylindrical Shells.

In earlier chapters definite integrals have been used

to express various geometric:31 or physical ouantities. Now

that our technique in evaluating-the integrals has vastly

improved it is time to consider other and more complicated

applications.

We start by using a new technique on an old problem,

namely the volumes of revolution. In Chapter 4 these were

computed by the "parailel slice" method ond we now want to

use the "cylindrical shell" method. The two methods will

be compared in a simple case.

Example I. Find the volume of the cone generated by rotating

a right triangular region of

base B. and altitude around

its altitude as an axis.

(Figure I-I).

In the parallel slice

method the volume was cut in-

to pieces by planes perpendic-
.

ular to the axis and upper

809 8 5 9

Figure I-I
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and lower bounds were obtained

for the volume of each slice.

Considering one slice,

(Figures 1-2 to 1-4) we have

first, from Figure 1-3,

r1 H - x

H

r
1

= B(1 - x).

Similarly,

r2 = B(1 -

Evidently a cylinder of radius

r
1

will completely contain the

slice, and a cylinder of radios

r
2

will be completely contained

in the slice (Figure 1-4). The

volume AV of the slice thus

salisfies the bounds.

Figure 1-2

Figure 1-3

7E32(1 X 4 Ax)2 tV 7B2(1 - ).1)2 Ax.

More generally, if m and M are lower and upper bounds of

the function

f(x) = 7E32(1 - 2L)2
H '

810

86 rj

Figure 1-4
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on the interval [x, x + Ax] then

mtx < AV < M1x.

Next we subdivide the inter-

val [0, H] into n parts with

pointsx=0xxx0
' l' 2'

1 :111i
UPXo

XI Xi-1
Art 1-1= Xft,

x
n
= H and consider

cuts at the corresponding Figure 1-5

points along the altitude of the

cone, If AV
i

is the volume of

the slice between xi -1
and x

then

(I) m.I Lx. < V. < M
I

Ax
'

where Ax. = x. - x
1-1

and m1 and M
i

are lower and upper

bounds of the function f(x) = TrB2(1 - 2i)2 on the interval

Ex x.]
i -I' t

(2)

From (I) v,e get

m
I

Ax < V < E M
1

Ax
1

.

1=1 1=1

sn
4456
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The theory in Chapter 3 then

tells us that

V = jr f(x)dx

if f(x) is unsicon on [0, Hi,

and tells 1.vs also that f(x) Is

unicon. So, finally,

H

V = Jr
0

782(1 - 2(-)2dx

X 3
H

I 2= -4-78 H.
0

So much for review. For the

cylindrical shell method we

dissect the volume into pieces

formed by rotating about the

axis strips parallel to the

axis. This gives us a solid

like a piece of pipe with the

top edge beveled outwards

(Figure 1-6). To get upper and

lower bounds for the vllume AV

of this shell we take cylindri-

cal shells with flat tops con-

taining it and contained in it

(Figure 1-8). The smaller of

812
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Figure 1-7
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www.manaraa.com

these IS a cylinder of radius x + Ax and height h2, having

a hole of radius x and height h2. Its volume is therefore

n(x + Ax)2h2 - wx2h2 = 2rxh2Ax + rh2Ax2

> 2rxh
2
Ax.

We take the lower bound in this form to avoid the term in

Ax2. Similarly, we find an upper bound

f(x + Ax)2h
1

- nx2h1 = 2rxh Ax + rh
1

Ax2

= 2n(x + Ax)h
I

Ax rh
1

Ax2

< 2n(x + Ax)h Ax.

From Figure 1-7 we get

I B - x
lid B

h
1

= - )

and similarly,

h
2

= H(I
x + Ax

).

So our bounds are

2wHx(I
x + Ax )Ax < AV < 2nH(x + Ax)(i E)Ax.

Here, however, we are stopped, for we cannot find a

function f that behaves the way nB2(I - )F.1-1)2 did in the

813
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previous case. That is, there is no. function f such that if

m and M are bounds for f(x) on [x, x + Ax] then necessarily

mAx < AV < MAx. The trouble is that the two factors x and

(I - r) reach their maxima and minima for different values

of x. We must therefore consider not the bounds of

2TrFix(I - u)

but those of

27FIx(I -

nd y vary independently in [x, x + 1x]. If m and

M o Jch bounds then we have

rAx < AV < Mtx

before, and again we can write the inequalities (2). Now,

however, the theory in Chapter 3 no longer applies, since the

m
1

and M. are bounds for r function of two variables. In the

next section we shall show how the earlier theory can be

modified to give us the expected result, that

V = Jr
0

2TrHx(I - ,)dx

x2= 27H j0r (x - 71)dx

I 2 x337= 2TrH(7,x - )

0

= 2TrH( ;432
- ..B2) = 1.TrB2H.

3

814

8 6



www.manaraa.com



www.manaraa.com

In any solid-of-revolution

problem there are always these

two methods That can be used.

Consider the general set-up of

Figure 1-9, where we wish to

rotate the oval-shaped region

about the axis AA. Strips per-

pendicular to the axis will

generate the washer-shaped

pieces of Figure I-10;whose

volumes are bounded by expres-

sions of the form

(3) ir(r2
2

- r2)As
I '

leading +o the integral

fs
s
2

-7TE(r2
(s))2 - r (s))2Dds

Figure 1-9

Figure 1-10

It is convenient to call expression (3) the "element of

volume" and, as we just did, to by-pass the careful argument

in Example I since it is evident that it is perfectly general.

Strips parallel to the axis of rotation generate pipe-

shaped pieces (Figure I-II) for which the element of volume

is

21TrhAu.

115
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(This is most easily remembered

by imagining the element cut

along the section S and rolled

out into a rectangular plate of

dimensions 2wr x h x Au.) This

gives the integral

fi.12

for the volume.

2wr(u)h(u)du
ul Figure I-11

Note that in each case the independent variable, s or u,

must be measured perpendicular to the strip, so that the

width of the strip is an increment of that variable. Of

course once the integral is set up we can make any substitu-

tions we wish to evaluate it.

Example 2. The region bounded

by the curve y = x2 - I and

the line y = 2x + 2 is rotated

about the line x = 4. To get

the volume of the resulting

solid we obviously need to

know the points of intersection

of the two graphs, which are

found, by solving the equations

simultaneously, to be (-I, 0)

and (3, 8).

816
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If we use the shell method

our element of, volume is

27rhAx = 2w(4 - x)(y2 - yi)Ax

= 27(4 - x)[(2x + 2)

- (x2 - I) ]Ax.

Hence the volume is

27(4 - x)(-x2 + 2x + 3)dx

3

= 2n jr (x3 - 6x2 + 5x + 12)dx

= 21T(4..x4 - 2x3 + ;4(2 + 12x)

81= 27(-- - 54 + 2-45 + 32 - -

= 647r,

The disc method is much

clumsier for this problem.

element of volume is

3

2 -

The

5
+ 12)

7r(r
2
2 - r

1

2)Ay

= 7[(4 - x2)2 - (4 - x1 )23Ay,

First of all, our independent

variable is y, so we have to

817
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Figure 1-13
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solve the bounding equations in terms of y. Secondly, we

must do the problem in two parts, for the expression of x
2

as a function of y changes at y = 0. For -1 < y < 0 we have

x
I

= /777-r, x
2

and for 0 < y < 8,

Hence

xi = /7477, x
2

=
2

1y - I.

o

V =
r
LI w[ ( 4 + /777-7)2 - (4 - /7-7:7)21dy

r8
w[(4 Iy

+

The first integral reduces to

1)2 (4 - (7747-7)2jdy.

r0

w j-1
16/777-1 dy =

32/T
(y + I)

The second becomes

3/2 0
32m,= --
3

-1

8
I(25 - 5y + 7 2 - 16 + 8/777-1 - y - 1)dy

= w (8 - 6y + 412 + 8(y + 1)
1/

)dy

= w(8y - 3y2 +2.y3 4....t(y +
1)3/2

818 868

8

0



www.manaraa.com

128 167= w(64 - 192 + + 144 - )

3

i60=

32
So the volume is 3m +

1 60 = 64w, as before.

819
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PROBLEMS

I. The region bounded by y = x3, y = 0, and x = I

is rotated about the y-axis. Find the volume of the

solid generated.

2. The region the same as in Problem I, but rotated

about the x-axis.

3. The region bounded by y = 0 and the arch of y = sin x

between 0 and w is rotated about the y-axis. Find the

volume of the solid generated.

4. Find the volume of the solid generated when the

region in Problem 3 is rotated about the line x = -I.

5. In the following problems the region bounded by the

given pair of curves is rotated about the x-axis.

Find the volume of the solid (a) by the shell method,

and (b) by the disk method and show that the results

are the same.

(a) y = 4x - x2 and y =

(b) y = /7 and y = x3

820
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6. The base of a floor lamp is a

piece of aluminum in the shape

of the solid of revolution

obtained by rotating about the

line x = 9 the region bounded

by the x-axis, the line x = 8.4, and the portion of the

curve y = 2 sin x/4 between 0 and 8.4. All measurements

are in inches. If aluminum weighs .0975 lb/cu in.

what is the weight of the lamp base?

Ans. 27.8 pounds.

7. The region bounded by the x-axis

and the first arch of the cycloid

x = a(8 - sin 8), y = a(1 - cos 8)

is rotated

(a) about the x-axis,

(b) about the y-axis.

Find the volumes of the

Ans. 572a3, 6n3a3.

resulting solids.

8. Find the volumes of the solids obtained by rotating

the infinite region in the first quadrant bounded

by the x-axis and the curve y = xex

(a) about the x-axis,

(b) about the y-axis.

821
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9. Consider the above problem for the region bounded by

the x-axis, the line x = I, and the curve y = x c

What conditions on c are needed in order that problems

(a) and (b) have finite answers?

$22
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2. Generalization of the Integral.

To present the theory needed for the problems of Section I

we must first introduce the notion of a function of two

variables. Following the discussion in Chapter 0 we can de-

fine such a function F as a correspondence that assigns to

each of certain pairs (x,y) of real numbers a unique real

number z, and we write z = F(x,y). Here and later, by the

word "pair" we mean what is sometimes called an "ordered pair",

i.e. the pair (1,2) is regarded as different from the pair

(2,1).

Since a pair of real numbers represents a point in a plane,

we can think of F as mapping a domain in the xy-plane into

the real numbers, or the points of a line. The domain of F

is then some set of points in the plane. Such a set of points

can be extraordinarily complicated, and the samples given in

Figure 2 -I are all very simple types. Fortunately such types

will more than suffite for our present needs.

Figure 2 -I

123
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In talking about integrals it is not surprising that

we want to consider unicon functions. The definition in

Section 3-6 is easily extended, as follows;

A function of two variables defined in a domain D is

unicon over D if for every c > 0 there is a 6 > 0 such that

(1) (F6c1,y1) - F(x2,y2)1 < c

whenenr (x
l'

y
1

) and (x ,y
2

)

are in D and 1x1 - x71 < 6 and

1Y1 Y2I
< d.

The picture in the xy-p!atIP

is illustrated by Figure 2-2.

No matter where the 6 x 6 square

is placed, two points in it and

also in D must satisfy condition

(1).

With this definition the

yi

whole theory of unicon functions,

as given in Section 10 and

Appendix A of Chapter 3, can be

carried out for functions of two

variabies. (The case of composite.

824
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functions is slightly more

complicated but we shall

have no use for this.)

Theorem I. If F(x,y) is

unicon over a domain D

then f(x) = F(x,x) is uni-

con over the domain which

is the projection into the

x-axis of the intersection of

D and the line y = x.

(Figure 2-3).

Proof, If Ix, - x2I < 6

and we set yl = xl, y2 = x2,

then obivously Iy1 - y2I < 6,

and so (I) is satisfied.

That is

If(xl) - f(x2)I =

IF(xl,y1) - F(x
2'

y
2
)1 < c,

which proves that f is unicon.

Now we are in a position

to handle our integrals.

Consider the domain D shown

825

Z A 3.

a a
FIGURE 2-4

Figure 2-4
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In Figure 2-4, defined by

e < x < bMI. IMMO

b,

a < y < b,

Ix - YI < A,

for some positive number A, Let F(x,y) be unicon in D.

We subdivide the interval ra,b] in the usual way with points

a = x
0

< xi < x2 < < x
n

= b,

but such that xi - x1
-I

Ax < A, I = I,2,....,n.

Using these points we erect a

covering of the diagonal seg-

ment from (a,a) to (b,b) by

squares, as shown in Figure 2-5.

On the square tying above the

interval [x x ], F(x,y),

being unicon, is bounded below

and above by some numbers m1

and M
1,

We can then construct lower and upper sums

n

L =
1=1

m10x1. and U = 2: M
i

Ax..
1=1

Corresponding to the definition and following discussion on

page 235 we can prove a similar result,

a,a 7401 xi

Figure 2-5

826 8 -u
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Theorem 2. If LI,L2,... and UI,U2,... are sequences of

-lower and upper sums, as defined above, and if lim IU
k LkI = 0,

k÷0.,

then the two sequences have the common limit

)(b

F(x,x)dx.

Proof. All we have to show is that L
k

and U
k
are lower and

upper sums of the function of one VF- able F(x,x) and the

result will follow from Appendix B of Chapter 3. But this

is evident: since mi, for instance,is less than F(Ei,ni)

for all choices of and n
i

in [x
i-1'

xii it is certainly

less than F(E
I'

n ) for those particular choices for which

ni = Ei; that is, it is less than F(Ei,Ei) for all choices

of Ei in [xi_1,xi].

We now need only one more result.

Theorem 3. If F(x,y) is unicon then there exist sequences

LI,L2,...,UI,U2,... of upper and lower sums such that

lim luk Lk1 = 0.

The proof follows, almost line for line, the similar

proof for a function of one variable, on pages 261 to 265.

Returning for a moment to the cylindrical shells, we

have the case where F(x,y) = f(x)g(y), f and g being unicon

functions. Now f(x) may be regarded as a function of x and

y whose value varies only with x, and it is quite evident

821
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that if f is unicon when considered as a function of x

only it is also unicon when considered as a function of x

and y; similarly for g. F is then the product of two unicon

functions and is therefore unicon. This fact and Theorems

3 and 2 above are all that is necessary to justify the ex-

pression of the volume as an integral.

As a by-product of the proof of Theorem 3, just as in

the one-variable case in Chapter 3, we get the result that

if 6(E) is the unicon modulus of F(x,y) and if our subdivision

satisfies A < (5(e), i = 1,...,n, then for any choice of

and ni in [xi_i,xi] the sum

n

E F(Ei,n;)Axi
i=1

b

approximates the integral F(x,x)dx with error at most

(b - a)c. A corollary to this is the following, sometimes

known as Duhamel's Theorem.

Theorem 4. Let F(x,y) be unicon in a diagonal strip as in

Figure 2-4, and let SI,S2,... be a sequence having limit 0.

For each k, let

n

S
k

= F(E
i'
n.)Ax

i

1=1

in our usual notation, with Ax. < S
k'

121

n, Ei, n and the X.
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will necessarily all vary with k. Then

b

lim S
k

=
a

jr F(x x)dx.
lo-co

For simplicity all this throry has been presented for

the case of a function of two variables. Only trivial

changes need be made, however, to generalize it to functions

of 3,4, or N variables.
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PROBLEMS

1, According to Newton's theory m1 F m2,

r

of gravitation two particles

of masses m1 and m
2

and a distance r apart attract

each other with a force

Gm1m2

r2

where G is a constant. To get the attraction of bodies

that are not particles we must use integration.

F =

(a) Consider a thin cylindrical

rod of length L and of L --->

linear density (i.e. pounds C--x---> FF

per foot) p(x) at a point x

ft from one end. Let there

be a particle of mass m on the axis of the rod

at a distance fl from this end. Show that the

attractive force of the rod on the particle is

*L P(x)
F = Gm dx.

JO (x + D)2

(b) Find F for the case of constant density p. Is

it the same as if the mass of the rod were concen-

trated at its center? If not, which is greater?

(c) If the rod in (b) were infinitely long would

the force be infinite?

830
880
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2. (a) If L and L
2

are

two rods of constant
L 1

<
L 2, ----->

density p, arranged as in the figure, what is

their mutual attractive force? [Hint. Use the

result of Problem 1(b).]

(b) What happens if one of the rods becomes infinitely

long? If both do?
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%Work.

A+ the end of Section 4-3 we met the concept of work

done by a force acting in the direction of a displacement.

There the only problems that were discussed involved

objects that could be considered to be concentrated at

a point, whose displacement could be specified by a

single variable x. Now we wish to considor "bodies"

that can be broken up, so that their different parts have

different displacements.

Example I. An inverted cone of

radius 4 ft and altitude 10 ft

is full of water. How much

work must be done to

raise all the water

to the level of the top of

the cone? We imagine the

water in the cone to

be divided into a large

number of thin horizontal

layers and consider +he

work AW required to lift

such a layer to the top, _L-

Let AV be the volume ci the
AX

Figure 3 -I

layer and p the density of the 1

water in lbs/cu ft. To get

132 88

Figure 3-2



www.manaraa.com

lower and upper bounds for AW we take cylinders contained

in and containing the slice (Figure 3-2). Their volumes

are respectively nri2Ax and nr22Ax. From Figure 3 -I we

have x/I0 = r/4, so

and so

r
1

= .4x, r
2

= .4(x 4 Ax),

n(.4x)2Ax < AV < n(.4(x Ax))2.

Individual molecules of the slice are lifted through

distances varying from 10-(x + Ax) to 10-x. If we assume

them all taken from the top we get too little work done, a

(ewer bound; whereas if we assume them all taken from the

bottom we get an upper bound. Using this, and multiplying

by p to change the volumes to weights, i.e. forces, we get

n(.4x)2(10-(x + Ax))pAx < AW < n(.4(x + Ax))2(I0 - x)pAx.

Thus we have an element of work of the type

and

AW = n(.4x)2(10 - x)pLx,

10

W = jc n(.4x)2(10 - x)pdx

=
400---m p = 26,000 ft -lbs,

since p is about 62.4 lbs/ci, ft.

833 88:7
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PROBLEMS

I. A vertical cylindrical tank 6 ft in diameter and IO ft

high is half full of water. Find the amount of work

done in pumping the water out at the top of the tank.

2. A tank in the form of a cone has a base with a radius

of 10 ft and is 20 ft high. If the axis is vertical

and the vertex down, and ;f the tank is full of water,

find the work required to pump the water to a point

15 ft above the top of the tank.

3. A ship is anchored, with the anchor 100 ft directly

below the ship. The anchor weighs 3000 lbs and the

anchor chain weighs 5 lbs/ft. How much work is done

in bringing the anchor up?

(a) A cylindrical tank car, of length L and radius R,

is full of oil of density p. How much work is

-equired to empty it through a hole in the top?

Express your answer in terms of the total weight

if the oil.

(b) Do the same problem for the case in which the car

Is only half full.

5. A water tank for a small community is a sphere 50 ft in

diameter with its center 400 feet above the lake from which

it is filled. How much work must be done to fill it?

834
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4. Length of a Curve.

Having seen how to calculate areas and volumes of two and

three dimensional figures we now take a step in the opposite

direction and consider the length of a curve. First of all,

what is a curve? We have used the term in an intuitive way

in connection with graphs but we must now become more precise.

Let us state a nice compact definition and then see what it

means.

Definition. A plane curve is the range of a continuous

mapping of a closed interval into the plane.

That is: If f and g are continuous functions on [a,b]

then the set of points (x,y) in the xy-plane defined by

x = f(t), y = g(t) for all values of t in [a,b] is said to

constitute a plane curve. Since this Is the only kind of

curve we shall consider we shall omit the modifier "plane."

(There are also space curves, and others.)

We are, in other words, defining a curve in terms of a

parameter. Can this always be done for the things we Intui-

tively think of as curves? Well, the graph of any continuous

function f over a closed interval [a,b] is a curve, with the

parametrization

x = t, y = f(t), t in [a,b].

835 885
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Also it was suggested (but not proved) in the discussion of

implicit functions that the graph of an equation of the form

F(x,y) = 0 can be broken into pieces each of which is the

graph of a continuous (implicit) function of x. Thus our

definition of a curve covers all the cases we are likely to

encounter.

In elementary geometry the length (circumference) of a

circle is defined in terms of

inscribed and circumscribed

regular polygons. If pn is the

perimeter of an inscribed regular

polygon of n sides, and Pn of the

corresponding circumscribed poly-

gon (Figure 4-I), then by arguments

not unlike those we have used the

ancient Greeks proved that the two sequences p3,p4,... and

P3, P4,.., have a common limit which is the circumference of

the circle.

Figure 4 -i

For our general curves the notion of inscribed and circum-

scribed regular polygons is of course inapplicable. We use

the most easily applicable portion of the old process, the

inscribed polygon.
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Let

t
0

= a, t t
2'° '

t
n

= b

be the usual subdivision of

the interval [a,b] with

0 < ti - ti_i = Ati.

Corresponding to each value

of i, from 0 to n, there is

a point Pi = (x(ti), y(ti))

on the curve C. (For convenience we use x(t), y(t) as the

notation for the parametrizing functions.) The set of line

segments POP., PIP2' """ Pn-IPn
is called a polygonal line

inscribed in C. The length of the polygonal line is just

the sum of the lengths of the segments. Fairly obviously,

if the Ati are very small the polygonal line will match the

curve closely, and its length should be a good approximation

to the length of the curve. This is the basis for the

definition of length.

Figure 4-2

Definition. A number L is the length of C if for every

> 0 there is a 6.> 0 such that every polygonal line

inscribed in C for which all At
i

< 6 has a length which

is an c-approximation to L.

This is translated into symbols as follows; The length

of the segment P
1-1

P is

/(x(ti) - x(ti_l ))2 + (y(ti) - y(ti -I))2 ,
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and so the length of the inscribed polygonal line is the

sum of these from i = I to n. The definition says that

this sum should be close to L If the Atl are very small.

This begins to look like an integral in some respects.

To actually reduce it to an integral we must make the

assumption that the functions x(t) and y(t) are differentiable.

Then the Mean Value Theorem tells us that

x(t.1 ) - x(t.
1-1

) = xl(&
I

)At
I'

t
I-1

< &
I

< ti,

y(ti) - y(ti_l) = yl(ni)Ati,
ti -I

< n
i

< t
i

,

The length of the polygonal line can then be written as

ixt (&, )2 4. yl(n1)2 Ati.

This is now in the form to apply Theorem 4 of Section 2.

Assuming all the functions involved are unicon we get, finally,

(I) L = jra xl(t)2 + y'(t)2 dt.

Example I. The length of the semicircle defined by

x =

is

= r2

838

-r < t < r,

88.8
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dx 2 d 2

):: 47) + (4) dt

f + -t ) dt
j-r / ,/r2 2

Jrr dt

0

= r lim arcsin + r lim arcsin tI
rI h 0

= r(0 - (-12)) + - 0) = err.
2

This is not a proof that the circumference of a circle

is 2Trr but merely a check on the consistency of our theory.

We had already used the relation between the radius and the

circumference in deriving properties of the trigonometric

functions and of their inverses. However, we could at this
fI

point start afresh, by defining w to be jr-1 (I - x2)-1/2dx

-
and d e f i n i n g s i n x to be the inverse function of j(

,

( i - t `
,

)

1/2
dt,

u
x

just as we defined ex to be the inverse function of jr, t-I dt.

From these definitions all the familiar properties of the

trigonometric functions and their relation to the geometry of

circles and triangles could be proved. This is sometimes done

as an exercise in advanced calculus courses.

839 13 8
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The use of the differential notation in this example

may have suggested to you a simplification of the basic

formula (I). Since

44)2 dx2 + dy2
dt

we can write (I) in the very brief form

L = f idx2 + d 2

This form is somewhat incomplete since we cannot say what

the limits are until we have selected a parameter.

Example 2. Find the i6n9th of the arc of y2 = x

(0,0) and (4,8).

Method I. y = x
3/2

jridx2 + dy2 = .f/dx2 2

4

= fo /(17; dx

T74 2( + 9 )7 X
3/2

d x2

3 en
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Method 2. 2ydy = 3x2dx.

Jridx2 dy2 dx2 + 9x4 dx2
4y2

4
1 +

9x
dx = as before.

4x3

Method 3. x = t2, y = t3, t In [0,2].

fI(2t)2dt2 + (3t2,2dt2

2
= fo 4t2 + 9t4 dt

t4 + 9t2 dt

=
I

7 4 + 9t2) 3/2
2

8
= 77( 103/2 - 1).

0

In some parametrizations the parameter may go to in-

finity while the point of the curve remains bounded. This

leads to improper integrals but may otherwise cause no

trouble.

Example 3. The curve x3 + y3 = 3xy has the parametrization

(see Problem 6 in Section 7-7)

e41 89/
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X = 3t

I + t3
y =

3t2

+ t3

x and y are both positive if and only if t is positive. Hence

the loop in the first quadrant is given by 0 < t < m . For

the piece of the loop defined by 0 < t < h we find

h

L(h) = f 3/t8 + 4t6 4t5 - 4t3 + 4t2 + I dt.
0 (I + t3)3

As t co the numerator behaves like t4 and the denominator

like t6; hence the infinite integral converges like jrt-2dt

and L = lim L(h).
h4.03

But this would be a ridiculous way to find the length

of the loop. The improper integral converges quite

slowly and we would have to take a very large value for

h to get any kind of good approximation to the true value.

Because of the symmetry of the curve, however, it is evident

that we need only find the length of the lower half of the

loop and multiply by two. The point of the loop on the

line x = y is evidently given by t = I, so we need only

evaluate the integral from 0 to I. Using Simpson's RuIe4

the approximations with 8 and 16 subdivisions agree to

6D and so our value of 4.917488 for the length of the loop is

almost surely correct to 5D. (In such a short computation

the roundoff errors, which occur at the 12th significant

figure, will not cause trouble).

M2
'SO 9
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PROBLEMS

I. What are the properties of unicon functions that

assure us that if x/(t) and y/(t) are unicon so is

F(t,$) = xv(t)z + yl(s)' ?

2. Find the lengths of the following curves, either

precisely (in terms of fractions, radicals, n, known

functions etc.) or correct to 2 decimal places.

(a) y = x2 from (0,0) to (4,16).

(b) y = sin x from (0,0) to (n,0).

(c) The involute of a circle,

x = a(cos 0 + 0 sin 0), y = a(sin 0 - 0 cos 6),

(see Problem 5 in Section 7-7)

for one revolution of the point A.

(d) y = log x from (1,0) to (a log a)

(e) y = ex from (0,1) to (c,ec).

3. Show that the length of one arch of a cycloid Is 8a.

4. The two functions

1 1

t cos T, 0 < t < n-,
x ( t ) =

0 t = 0;

1

sin t '

y(t) =

0

0 < + <

t = 0;

843
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are easily seen to be continuous at t = 0, and so

they define a curve C with endpoints at (-1/7r,0)

and (0,0).

(a) Show that the length of the portion of C

defined by t in [h,1/71.], h > 0, is

dt.

(b) What happens as h 0+? Does C have a length?

5. (a) Using the parametrization

x = b cos 8, y = a sin 8,

for an ellipse, show that the length of one

quadrant of the ellipse is

isn/2
a VI - kzsinLO d8,

where k2 = (a2 - b2)/a2.

(b) Because of its appearance in this problem the

integral above (omitting the factor a) is

known as an elliptic integral. More precisely,

this is the complete elliptic integral of the

second kind, designated by E(k,7112). Write

and run a program to make a table of

E(sin a,7112) for a = 0(5 °)90 °, accurate

to 5D.

(c) Show that the answer to Problem 2(b) is

2i7 E(sin 45°,7112), and hence get it to Sp.

144
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6. (a)' For n > 0 the curve xn + yn = I has an arc

going from (0,1) to (1,0). Show that the length

of this arc is

1
n f72777

Ln = f /1 +(-21'-7) dx.

0 1 x

(b) The cases n = I and n = 2 are familiar. Show

that L2/3
= 3/2.

(c) Find at least one other case that can be

integrated exactly, and do so.
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5. Mean Value.

To get the average grade on an examination we add together

the grades of the individual students and divide by the number

of students. This is the most common meaning of the word

"average". The word is often used in other ways, however, and

to avoid ambiguity this type of average is called in mathematics

the arithmetic mean of the grades, or simply the mean or the

mean value. It is customary to denote the mean by putting a

bar over the appropriate symbol; thus

n

=
n

i=1
gi

is the mean of the grades gi, g2, gn.

Figure 5 -I, taken from Chapter 4, gives the electric power

consumption of a town for a 24-hour period. What should we

mean by the "average con-

sumption throughout this

period"? As an approxima-

tion we might take the mean

of 24 values at the end of

each hour,

24
c Ec(1),

1=1

but this does not reflect any

6000

v4000

0

2000

0 3 6 9 12.
Time

15

Figure 5 -i

18 2I 24

sudden surges that might have occured within any hour. A better

approximation would be the mean of values taken every minute;

8 D
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(I)

1440
c = 1440

I

14-0=1

c(i/60)

Better yet would be values taken every second, and so on. The

physical process breaks down at about this point but the mathematical

model can continue merrily onwards.

(2)

Let us rewrite (I), slightly modified, as

1440
x
L4
,

77 c(.)At
I '

1=1

where Ati = 1/60 and is taken somewhere within the i-th minute.

This is obviously as good as (I) in giving us what we want. But

now the and so on" process is clear. For any 6 > 0 choose an

n > 1/6 and let t1 = i/n, I = 0,I,...,24n, Then At = t - t 1-1 = 1/n < 6,

Let Ei be in [ti_1, ti], and define

24n
c6 = c(i)Ati.

Then by Section 3-7, page 265, we have

I im =
6+0 6 7(

f024

c (t) dt.

This is then a reasonable number to take as t, the mean consumption.

This procedure, which can be applied to many similar cases,

leads to the following general definition.

841
97
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Definition. If a function f is defined ov,lr a closed interval

[ast)] the mean value of f on [a,b] is

b - a

jrb
f(x)dx

provided this integrai exists.

Example I. The mean value of sin x over the interval [0,11.] is

' 2
A sin x dx = 0

1(-cos x) = .7" = .636,

Example 2. A rope 20 ft. long runs over a pulley C at the top of

a pole CD 10 ft. high. One end is

fastened to a heavy block B, and

the other end A is moved horizontally

away from the pole, thus raising 8 to

the top of the pole. What is the

mean length of AC in this process?

Method I. Let AC = y, AD = x. Then

y = /7-7-1773 and x varies from 0 to 103. Hence

1

10/3

Y = 1/x2 + 100 dx
°

Figure 5-2

10/7

rLixix2 + 100 + 50 log(x + 177-760)
r-10v3 0

= 10 + 5 log(3 + 2) = 13.80 ft.
IT

348 '89.8
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Method 2 -Let AC =-T,-130 = z, Then y = 20 - z, z varies over

[0,10], and so

r 10
I

Y Tb"
(20 - z)(1:: = 15 ft.

Obviously something is wrong. The trouble lies in the formu-

lation of the question, which asks for the mean of a variable, not

of a function. In the two methods we have expressed the variable

y as two different functions of different independent variables

x and z, and have obtained two different results. In short, the

mean value is not independent of the function expressing the

variable to be averaged. To cover cases like this one uses the

phrase "the mean value of one variable with respect to another."

Thus the mean value of y with respect to x is 13.80 ft. and with

respect to z is 15 ft.

There is a generalization of the notion of mean value that

is often useful; in fact, we shall use it in the next section.

Returning to our problem of averaging grades, suppose that an

examination was given in 20 sections and that the mean grades in

these sections are gl, g2,.., g20. To get the overall mean we

do not merely take the mean of gl,.., g20 but we "weight" these

means with the number of students in the section; so that

20 20

with N = 2] n
1,

1=1

if there are n
1

students in the i -th section. A moment's thought

will convince you that this is the same g that we would get if

149
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weapplfed--1-he 'orilinal-method to the whole set of N grades.

The passage from the finite to the continuous case can be

made just as before. We are given two functions f and w on an

interval [a,b], with the restriction that w(x) is continuous,

is not identically zero, and is either always > 0 or always

< 0 on Ca b]. Such a w is called a weight function. Then

the mean value of f on [a,b] with respect to the weight w is

w(x)f(x)dx

w(x)dx

The conditions on w insure that the denominator is not zero

(see Problem I).

One property that any kind of average should have is to lie

between the extremes of the averaged quantities. Let us prove

that the weighted mean does so. Let m. and M be lower and upper

bounds of f on [a,b]. Then for every x in [a,b]

m < f (x) < M.
"1.

Consider the case w(x) ,>. 0 for all x. We get

w(x)m < w(x)f(x) < w(x)M.

(For w(x) < 0 the inequalities are reversed.) From one of the

basic properties of integrals it follows that

.
850 900
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( 3 ) fa
w(x)m dx < f w(x)f(x)dx < f w(x)M dx.

a a

Since m and M are constants and

(4) m <
fa < m.

w(x)dx

b

w(x)f(x)dx

I b
w(x)dx > 0 this gives us

(If w(x) < 0 the inequalities are again reversed at this point,

and we get the same result.)

This result is true even if f is not continuous, as long as

it is bounded and w(x)f(x)dx exists. If f is continuous it

has a minimum and a maximum on [a,b] and these can be taken to be

m and M, thus giving the desired result.

A useful theorem comes at once from these inequalities.

Mean Value Theorem for Integrals. If f is continuous on [a,b] and

if W is either always > 0 or always < 0 on [a,b] then there is

a in [a,b] such that

I w(x)f(x)dx = f(E) fa w(x)dx

provided these integrals exist,

Proof. (For the case W(x) > 0). We start with the inequalities
b

(3). If Jr
a
w(x)dx = 0 these become
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Hence

b

0 <
Jra w(x)f(x)dx < 0.

I b b

w(x)f(x)dx = 0 = f(Ofa w(x)dx

for any. E in [a,b].

I,
b

Having settled this trivial case we can assume that

W(x)dx is not zero, and hence is positive since W(x) > 0.

We can then pass to the inequalities (4). Let m and M be the

minimum and maximum of f on [a,b] and let f(c) m, f(d) = M. Then

(4) says that the mean value of f lies between f(c) and f(d), and

by the Intermediate Value Theorem there is a E in [c,d], and hence

in [a,b], such that

w(x)f(x)dx

b

jraw(x)dx

which gives the desired result.

Corollary. If f is unicon on ra,b] then there is a E in [a,b]

such that

b

f(x)dx = (b - a)f(E).

852 90
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PROBLEMS

I. Theorem. If w is continuous on [a,b], is not

identically zero, and is never negative, then

1mb
w(x)dx > O.

Ja

Prove the following:

I. There is a point c in 'ail)] such that

w(c) > O.

2. There is a d > 0 such that w(x) > w(c)/2

for Ix - cl < 6,

3. c + d

d

w(x)dx > dw(c)

4. rb
w(x)dx > O.

2. Find the mean value of each given function over

the given interval. Draw the graph of y = f(x)

and the line y = mean value, and see If the result

looks reasonable.

(a) f(x) =

(b) f(x) =

(c) f(x) =

(d) f(x) =

(e) f(x) =

sin x,

sin x,

sine x,

1

[0,7/2].

[0,211.].

[0,27].

[ -1,1].
I + x2'

x log x, [0,2].

853 9U
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3. On the diameter of a semicircle

10,000 equally spaced points are

taken and used In pairs as two

corners of an inscribed rectangle.

(a) What is the mean area (approximately) of these

5000 rectangles?

(b) What is their mean altitude?

(c) What is their mean base?

4. As in 3, but this time the points are equally

spaced along the arc of the semicircle.

5. Another useful kind of average is the root mean

square, defined to be the square root of the mean of

the square of the function, I.e.

bT7=77rRMS(f) =I/ I f(x)2dx.(

(a) - (e) Find the RMS for each of the functions

of Problem 2.

(f) In considering power consumption in alternating

currents it is convenient to use the RMS of

the voltage rather than the amplitude. (The

mean voltage is of course zero). Show that the

RMS of the voltage V = V
o

sin wt over one

cycle is Vo/iT.

1154' .9
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(g) A more useful quantity than the RMS of the

function f itself is often the RMS of

f(x) - 1r, where T is the mean value of the

function. Show that over any interval [a,b],

RMS(f(x) - T) = (RMS f(x))2 -

9 0
, . ." 855
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6. Centroids.

We know from childhood the

Law of the Lever: A weight of

w
I

pounds at a distance s
I

from

the fulcrum will balance a weight 16 1 b 10 1 b

(-61 81---)

of w2 pounds at a distance s2 if

w lsl = W252.

A more sophisticated way of

stating the same law is the

following: Let x
I

be the directed

distance of w
1

from any point A

Figure 6 -I

I
16 lb

FT'10 lb

Figure 6-2

of the lever and x
2

the distance of w
2

from A. The weights

w ill balance if the fulcrum is at the weighted mean,

w
1

x
I

+ w2x2
x

w
1

+ w2

from A.

The advantage of this formutation is that it applies as

well to n weights as to two. The point at distance x from A is

called the center of gravity of the weights, or, if one wishes

to consider only the masses of the bodies and leave out any con-

siderations of forces, the center of mass.

Given a distribution of n masses m. on a line, to find

their center of mass we have to introduce a coordinate system,

that is a point A from which to measure distance and a unit of

856 906
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distance to do the measuring. Does the center of mass depend

upon our choice of coordinate system? Presumably not, or we

wouldn't have used the word "center," but this is something

we should prove.

A B'

Figure 6-3

Let A be the origin of one coordinate system with unit

distance AB, and Al the origin of another with unit distance

A'B'. The coordinates of a point P in the two systems are

X = AP
AB '

x
7-7-17.

(Of course these are all directed distances). Then

(I) x
1

=
AP - AA' AB AA'

ATB,
ax + a,Err-

AA1
where a = -A

AB
-r-r- and 13 =- r.gr are constants independent of P.

Now if masses ml,m2,...,mn are at points PI,P2,...,Pn their

center of mass is determined by

I

n n

x =
m

/2 m.x. , M = 2: m. ,

. , ,

1=1 i=1 '

in the AB system and by

_x ! - 2] mix.
i=1

851
9( 7
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in the A'B' system. From (I) we get

n

71- (ax + 0)
i

- [a Emixi + Ern
i=1

= ax + a.

Thus the point P with coordinate x in the AB system has coor-

dinate 71 in the A'B' system. In other words, the center of

mass P does not depend on the coordinate system used to define

it.

The case of continuous mass distribution is handled Just

as in the preceding section.

Example I. The density of the material in a cylindrical rod

varies exponentially, at one end being double its value at the

other end. At what point does the rod balance?

Take the length of the rod as the unit of length, and let

the densities at the two ends be p0 and 2p0. Measuring from

the lighter end the density p at point x is p = Ae
kx

, and we have

p
0

= Ae
0 2p0 = Ae

k

Hence A = po,e
k = 2, k = log 2. An element of mass is of the

form pcAx, where c iS the cross-sectional area of the rod. Hence

xpoe
kxc dx

)( poe
kx c dx

851
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p0 and c drop out, and evaluating the integrals gives

(x/k - l/k
2
)e

kx
0

0
(I/k)e

kx

(I/k 1/k2)e
k

+ I/k

(I/k)(ek - I)

= 2 - = 2 - 71 - .5588.
rc

The balance point is thus about .56 of the way from the lighter end.

Example 2. The cross-hatched

region in Figure 6-4 represents

a flat uniform plate, the upper

edge being an exponential curve.

We wish to balance it in a

vertical position at a point on

the lower edge. What point?
Figure 6-4

It is fairly evident that this is the same problem as in

Example I. The varying density p is replaced by the varying height

y, and the element of mass is pyAx, where p is the constant areal

density of the plate, in pounds per square unit. The answer is

then x = 1.32, that is, .56 of the length from the small end.

Example 3. For a plane region, as in Figure 6-4, we can also

compute y, the mean of y weighted with respect to horizontal strips.

ER
90,9
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This would be the balancing point if the region were turned

so that the y-axis is horizontal.

In computing y we must do the

integration in two parts, since

the expression for the length of

the strip needs two different

formulas. For 0 < y < I the

length is simply 3. For the

equation of the curve we have,

as in Example I,

giving

AV

111111111r
0101:17116.....-

nOVAIWWWWWWWWW&MOMAMAMW
IMPAMIAMMMIVAWAWWWWWAMWOWO

(3,1)

y = Aekx, 2 = Ae
0

, I = Ae
3k

,

I 1

A = 2, k = Tlog7 = 2.

Hence for I < y < 2,

x = g X
k A log 2

lo
2

So

Figure 6-5

r I 3 9

7
3ydy

JC

2

(-lo 2)Y Ioq '17717 3

/41

T
3dy + =)9-2-

3

./ ( -logg 2
)loq

(The constant density factor p cancels out so we did not

bother to put it in).

860 9 0
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With any plane region we can associate, as in Examples 2

41=.

and 3, a point (x,y) with respect to a pair of axes. We have

seen that this point is unchanged by change of scale or by

translation of the axes. Is it also unchanged by rotation

of axes? If so, we are Justified

in regarding it as a proper-/ of

the region itself and not of its

analytic representation. The

answer is "yes", but we are not

yet in a position to prove this.

For the present we assume this

property without proof.

Figure 6-6
This point is sometimes called

the center of area of the region but more often the centroid.

It is found, in general, by the method of Examples 2 and 3,

with one simplification. In the basic expression for both x

and y the denominator is just the area of the region; hence

there is no need to compute it twice, and if it is a region

whose area is known we need not compute it by integration at

all.

Example 4. To find the centroid of a quandrant of a circle

(Figure 6-7) we have

xa2 - x2 dx

2

861. Figure 6-7
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I 3

743 4a

.7r a

Because of the symmetry of the figure it is evident that 7

has the same value.

Symmetry is a big help in finding centroids, by virtue

of the following property.

Theorem I. If a region is symmetric with respect to an axis

its centroid lies on that

axis.

Proof. Take the axis of

symmetry as the y-axis.

If h(x) is the length of

a vertical strip then be-

cause of the symmetry

h(-x) = h(x) and the

limits of integration are

-a to a. Then xh(x) is

an odd function, and

r a

x
./ -a

xh(x)dx = 0.
ATTE

(By Theorem I, Section 11-7).

Figure 6-8

Corollary. If a region has two axes of symmetry their inter-

section is the centroid.

862 9 ;
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This corollary takes care of a lot of familiar figures:

rectangle, circle, any regular polygon, etc. Note that the

two axes need not be perpendicular; for instance, the

corollary applies to an equilateral triangle.

Another general theorem that is often useful in locating

centroids is the following:

Theorem 2. If a region is composed of two or more subregions

its centroid is the weighted mean of the centroids of the sub-

regions, the weights being the areas.

Suggestion of proof. Let R

be the union of RI,R2, and

R
3'

as in Fiaure 6-9. If

A, AI, A2, A3 are the areas

of the respective regions

and x
'
x x

2'
x
3
the abscissas

of their centroids then

a a a3

Figure 6-9

/'b
Ax = )(

a
xhdx = Ja x(h1 + h2 + h

3
)dx

= f xh dx + xh
2 a

xh2dx + f xh3dx,
a Jab

b b

where we define h. = 0 if the vertical line through x does

not intersect Ri. The last expression is then the same as

863
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Hence

I.
b
2b

1

xh
I

dx + Jar xh
2
dx + jr xh

3
dx

2
a
3

= A
I

7
I

+ A
2
7 + A

3
7

A
1 1

+ A
2
7 2 + A

3
7
'3

x Al + A2 + A3

1MID

and y can be treated similarly.

It is evident that this argument can be extended to the

general situation.

Example 5. Figure 6-10is a semicircle of radius 3 in. on

top of a 12 x 3 in. rectangle.

We introduce coordinates as

shown. For the rectangle,

A = 36, x = 6.

and for the semicircle,

A = 9n/2, 7 = 9.

Hence for the whole figure,
fib

7 =
6(36) + 9(971/2) 48 + 9n

36 + 9n/2 U-17-7
6 846

'

864 9.4

Figure 6-10
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get y we must know y of the

semicircle. We have found that for

4a
a quadrant of a circle it is Tri .

Since it is the same for both

halves of the semicircle (Figure 6-11

it will be the same for the semicircle

as a whole by virtue of Theorem 2.

So

Figure 6-11

123(36) + (3 + --)(9n/2)
=

28 + 3n3n.
36 + 9n/2 n

An interesting relation between centroids and solids

of revolution is known as the Theorem of Pappus.

Theorem 3. If a plane region is rotated about a line in

its plane not intersecting it, the volume of the resulting

solid is equal to the area of

the region times the circumfer-

ence of the circle described by

Its centroid.

Proof. Take the axis of rotation

as the y-axis. Then (Figure 6-12)

b

fa
xhdx

A

a

Figure 6-12

where A is the area of the region. Using the cylindrical shell

method we have for the volume of the solid of revolution,

865
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b

V = )(
a

(21Tx)h dx

= 2ir f xh dx
a

= (21T-x-)A,

as was to be proved.

The Theorem of Pappus can be used in either direction.

Example 6. (a) To find the centroid of a right triangle

(Figure 6-13) observe that if rotated

about the side AC we get a cone of

radius a and altitude b. Hence

3ma2b = (21T7);-ab, or Tc- = a/3.

Similarly we find 7 = b/3. Figure 6-13

(b) The torus, obtained by rotating a circle of radius a

about a line b units from the center, b > a, has by the

Theorem of Pappus a volume of (2wW(wa 2) = 2w2a2 b, as was

found in Chapter 3.

866
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PROBLEMS

I. The density of air decreases with height roughly

according to the formula p = poe
-h/a , where p0

is the density at the surface and a = 6 miles.

(a) Where is the center of gravity of a cylindrical

column of air 12 miles high?

(b) Assuming that the formula holds for arbitrarily

large h (it doesn't) where is the center of

gravity of an infinitely high column?

2. Find the centroid of each of the following regions.

(a) Bounded by y = 17, y = 0, x = I.

(b) Bounded by y = ax2, y = b.

(c) Bounded by the x-axis and the arch of y = sin x

from x = 0 to x = w.

(d) The infinite region in the fourth quadrant

bounded by x = 0, y = 0, y = log x.

(e) The infinite region bounded by the x-axis

and y =

I + X2

3. Why cannot the following be added to Problem 2?

(f) The infinite region in the first quadrant

bounded by the axes and y =
I + x2

861 7
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4. Is the following statement true? "The centroid of the

infinite region bounded by the x-axis and the curve

y = (x2 + 1)-1/2 lies on the y-axis".

5. Find the centroid of the region bounded by the x-axis

and the first arch of the cycloid.

6. Find the centroid of a quadrant of an ellipse, using

the parametric form

x = a cos 6, y = b sin 6.

7. Do Problems 3 and 4 of Section I by using the Theorem

of Pappus and the results of Problem 2(c) above.

8. Find the centroid of a quadrant of a circle, using the

Theorem of Pappus and the formula for the volume

of a sphere. Check with Example 4.

9. Find the centroid of each of the following regions.

4______8________>

(a)

*-----10-->

868

(b)

9 i 8

i

I

1

<--5-->

<----10----->

(C)
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<------ 20 ---->
(d)

a

(e) (f)

10. (a) Prove that if.a region is divided into two parts

its centroid is on the line segment joining the

centroids of the two parts.

(b) Prove that if a region is divided into three

parts its centroid is in the triangle (possibly

degenerate) formed by the centroids of the three

parts.

(c) Formulate and prove a statement like the above for

four points; for n points.

Given a triangle AI, A2, A3 and masses m1, m2, m3

at the vertices. As in (b) above, the center of mass

lies in the triangle. Prove conversely that for any

point P in or on the triangle there are nonnegative

masses ml, m2, m
3
whose center of mass is P. Prove

also that ml, m2, m
3
are unique to within a common factor.

The numbers (m m
2'

m
3

) are called barycentric

coordinates of P.

869
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12. (a) For the triangle (0,0), (0,1), (2,0) find a set of

barycentric coordinates of each of the points

(1/2,1/2), (1,0), (0,1), (x,y).

(b) Find the xy-coordinates of the points with

barycentric coordinates (1,1,1), (1,2,3),

(0,1,1), (1,0,0), (a,b,c).

810
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Chapter 13

INFINITE SERIES

I. Taylor Series.

At various points in our study of calculus we have

found Taylor's Theorem (Section 6 -4) a useful tool in

computation or in deriving properties of functions. The

time has now come to apply this theorem systematically.

First we give a restatement and a proof.

Theorem I. If f,fi,f",...,f
(n+1) are unicon on an inter-

val containing a and x, then

I

(I) f(x) = f(a) + f'(a)(x - a) + 7T f
" (a)(x - a)2 +

+ f
I (n) (a)(x - a)

n I fx f(n+1) (t)(x - t) n dt.
Ja

Proof. The method is just successive integration by

parts, differentiating f at each step and picking the

constant of integration properly. We start with

(2) f(x) - f(a) = Jr
a

f'(t)dt,

the second form of the Fundamental Theorem. Taking

811 92
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we get

u = f'(t),

du = f"(t)dt,

dv = dt,

v = t - x = -(x - t),

x rx
f(x) = f(a) - f'(t)(x - t) f"(t)(x - t)dt

a
a

= f(a) + f'(a)(x - a) + Jr
a

f"(t)(x - t)dt.

Now we take

to get

u = f"(t), dv = (x - t)dt,

du = f" (t)dt, v = (x - t)2,

f(x) = f(a) + f'(a)(x - a)

III (t)(x - t)2
1 J_

a2
ft,' (t)(x - t)2dt

a

1= f(a) + f'(a)(x - a) +
2
f"(a)(x - a)2

x
+

I

j( f" (t)(x - t)2dt.

It is easy to see that a continuation of this process will

give the desired result. (The more cautious mathematician

may wish to give a proof by mathematical induction).

872
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Notice that we have not implied that x > a, for (2)

holds even if x < a.

It is customary to define f
(0) = f, and 0! = I.

With these conventions we can write (I) in the form

n

(3) f(x) = 2]
f

I (k) (a)(x - a)k + R
n

(x),
k=0

where

rx
(4) Rn(x)

Jra

,(n+1) (flEx - t)ndt.

The first part of the right-hand side of (3) is called

the Taylor expansion of f, about a, to n + I terms.

R
n
(x) is the remainder after this expansion (or after

n + I
terms, or after the (n + 1)st term). The Taylor

expansion about 0 is also known as a Maclaurin expansion.

You may have noticed that the expression for Rn(x)

given in (4) is not the same as the one given in the

earlier statement of Taylor's Theorem. This other form of

R
n
(x), known as the derivative form, is easily derived

from the integral form by use of the mean value theorem

for integrals (Section 12-5). Since (x - t)n does not

813
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change sign in the interval [a,x], and since f
(n+1)

was

assumed unicon, and hence continuous, the hypotheses of

the mean value theorem hold and we have

I

x

R
n
(x) = 1717 f

(n+1) (0 jr
a

(x t)ndt

=
f

(0 n + I

J a

or

(5)
n (x) 77-747-717 (x a)

n+I
f

(n+1)
(E)'

with between a and x,

Example I. For the expansion of log x about I we note

that

f(x) = log x,

f(x) = 1/x,

f"(x) = -I/x2,

f"(x) = 2/x3,

f (x) = (-I)
k -I (k - 1)!/x k

It follows that

(6) log x = 0 (x - I) - 2(x - 1)2 + 7( x - 1)3

- 4(x - 1)4 + + (-1)n-1 1(x -
on + R

n
(x

814

Y.



www.manaraa.com

with

(t - x)n
(7) R

n
(x) = (-I)n dt

t
n+

or

(8) R
n
(x) = (-1)n (x - 1)n+1

n+I '
E between I and x.

n + I

Since log x and all its derivatives are defined in

the interval (0,co) the above expansion, with remainder,

is good for any x > 0.

From (8) we can easily get 'a bound for IRn(x)I. If

x > I then I/E
n+I is maximum when E = I; if x < I then

n+I .

l/E is maximum when E = x. Hence

IR
n
(x)1 <

n +
Ix -

Iln +l
x

x

( (x -

n + I

(i -
x

That Taylor's Theorem is not

Taylor expansion is shown by the

I if x> I

1/xn+1 if x < I

if x > I

if x < I.

the only way to get a

following c.cample, which

is typical of methods we shall develop later.
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Example 2. The Maclaurin expansion of f(x) =
I x

can
-

be obtained-by dividing I by I - x in increasing powers

of x. We get the algebraic identity

(9)

x
n+I

1-47 = 1 + x + x2 + x3 + + xn +
1 - x

We leave it to the reader (Problem I) to show that the

first n + I
terms on the right-hand side constitute the

terms of a Taylor expansion. Once this is done it

follows that the remaining term is the remainder. That

is,

n+I

I

x
- x

I f x (n+1)
R
n
(x) = (t)(x - t)

n dt
Jo

x (x t)-
n

(I - t)"2 dt.

This equation can be checked by evaluating the integral

(see Problem 2).

If, in (9), we change n to n - I
and replace x by -t

we get

1 + t
= 1 -

n

t2 t3 (._,)n-Itn-1 + (-1)n
t++ t



www.manaraa.com

Now Integrate each side of this identity from 0 to x.

This gives

(10)

where

(II)

2 .x3
..1)n-I lxn

log (I + x) = x - + -

x
t
n

R
n
(x) = (-I)

n dt.
10

This is the Maclaurin expansion of log (I + x).

Finally, in (10) put I + x = y. We get

(12) log y = (y - I) - 4.(y - 1)2 + 4.(y - 1)3 -

with

+
n-I I(y - I)

n + S
n
(y)

rY- I
to

S
n
(y) = (-1)

n

JO I + t
dt.

The expansion (12) obviously the same as (6), and so

S
n
(y) must be equal to the R

n
(x) in (7). These examples

illustrate the many forms in which the remainder terms

may appear.

If all derivatives of f exist and are unicon we have

the possibility of letting n -4- .., in (I). That this can be

871
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done in some cases is evident from our earlier use of

the Maclaurin expansion of ex. We have

x
n

ex = + x + x2 -I- Tr° Tr Rn ( X) .
2!

x
R
n
(x)

(n + 1)1
E)

*

For x > 0, for example, e < e
x

, and so

n+I
IR

n
(x)1 < T32147.7 ex.

Now if N > 2x, then for n >N,

n+I
x ex lcx)r.

x x

( n + I ) ! N + I N "" n +-7-

< ex x--
N!

2
n-N+I

As n 0. the last quantity. 0, and hence

2
e
x x

n
X

(12) = li4.m (I + x + + + T).
n0. ! n.

We write (12) in the forms

2
e
x

= I + x + + + 17-x +
.27

w n

Ex
n=0 n1

878
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and call it the Maclaurin series of ex. In general, if f

and all its derivatives exist at a, the expression

CO

f(n)(a)(x - a)n

is the Taylor series of f(x) at a. The Maclaurin series

is simply the case a = 0. A Taylor series of a function

may or may not converge for a given value of x, and if

it does converge its limit may or may not be the value of

the function for that value of x. This is why we have to

pay so much attention to the remainder in the finite

Taylor expansion.

Example 3. Consider the remainder in the Maclaurin ex-

pansion of Iog(I + x) given by (II), for the case x > 0.

We have

IRn(x)I =

rx to

Jo I + t
dt.

Since t varies from 0 to x, I + t lies between I and

I + x. Hence

rx
t
n x tn

Jo + x
dt < IRn(x)1 < Jr 1_ dt,

or, evaluating the integrals,

x
n+1 n+1

1

< IR
n
(x)I <

x

I+ xn+ I n+

879
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0 if x < I,

As n - co, xn+1 - I if x = I,

co if x > I.

Hence the Maclaurin series converges to the value of

the function if and only If x < I. We leave it to the

reader to show that for x < 0 the series converges to

the function if and only If x > -I. Hence the interval

of convergence of the Maclaurin series of log (I + x)

is -I < x < I.

For easy reference we list here some important

Maclaurin series and their intervals of convergence.

They are derived either in the text or in problems.

co

ex
E x x2 x3

I + x + TT + . , < x <
n=0 n

CO

sin x = 2] (-I)n

n=0

x
2n+1

x3 x5 x7
(2n + I)! x TT 3-r Tr

< x <

co

-
x

Icos x = 2]
(-1)n x

2n
2 6x

TTFTT
= +

4! 6, , < x < co.
n=0

8110 90
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co

log( 1 + x) = (-1)n-I
co

n

x 2

42 3x x7- x- - 1140. p

n
n= I

co

,n x
n

2n+I
x3 x5 x 7

a rctan x = E - , x - + -5- - +
n=0

co

(I + x)a =
1: a(a - I) (a - n +

xn

n=0
n!

I + ax + a(a - I)
x
2

+
a(a - I)(a - 2) x3

=
21 3!

+ I

For further study of Taylor series, and in particular

their relation to the operations of differentiation and

integration, we must first consider infinite series in

general. This is the subject of the next section.

811
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PROBLEMS

I. Show that (9) is actually the Maclaurin expansion of

2. Show that (n + I)
(x - t)n

n+
dt = xn+1

I - x '

0 (I -
t)2

x n

0
[Hint. Write the integral as

I

dt
I - t)

(I - t) 2

and make a substitution.]

I

x
t

+ t
4 ce

n

3. Show that for x < 0, dt converges to 0 as n
0

if and only if x > -I.

4. Find the maximum possible error in approximating each of

the following functions as Indicated.

(a) Log x by 4 terms of the expansion about I, for

Ix - II < .2 .

(b) x
1/3

by 3 terms of the expansion about 8, for

Ix - 81 < 2.

(c) sin x by 3 non-zero terms of the expansion about 0,

for lx1 < 1114.

812
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(d) cos x by 4 terms of the expansion about w/3,

for Ix - w/31, < .1.

5. (a) Find the Maclaurin series for sin x and prove

that it converges for all x.

(b) Do the same for c s x.

6. (a) Find a form of the remainder for log(I - x)

similar to the one given in (II) for

log(I + x).

(b) By subtracting, show that for 0 < x < I

I + x x3 x5 x7-
1

Inn 2 [x + 3- + 5- + es. 4- 77-1=T1/-x

rx
2t

2m
where T

m
= Jo dt.

- t2

(c) Since the integrand in Tm is always positive,

by the Mean Value Theorem for integrals we

have

2
2m

T
m

, 0 < < x.
2-

93J
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Show that the right hand side is an increasing

function of and hence that

2x
2m

Tm - x2

(d) For what value of x is
-I- X 3. 7 How many terms

I - x

of the series in (b) would be needed to compute

Ion 3 to 30? Do you know a faster way to compute

log 3?

7. In each of the following find the first three non-

zero terms of the expansion. Find an expression

for the genera? term if this can be done easily.

(a) e
-2x about 0.

(b) sin x about ir/4.

(c) ex about a.

(d) - 2x2 + x + 2 about 0; about -I.

(e) tan x about 0.

(f) 67-about 9.

(g) tog x about 4.

884
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(h) VT-7-7 + IT-7-7 about 0.

(i) es
in x about 0.

(j) arcsin x about 0.

I

2
8. We wish to approximate J0 e

xdx
to 51!.

(a) Show that for 0 < y < I,

2

e = I + y + + + + R
n'n!

n+ I

where 0 < R <
n (n + I)! e°

(b) Putting y = x2 in the above and integrating,

show that

fo e
x2

dx = I +

where 0 < T <
n (2n + 3)(n + I)!

+ + + T
n5 x 2! " (2n + 1)n!

e

(c) Show that 8 terms of the series (n = 7) is

enough to give the required accuracy.

885
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9. Use the method of the previous problem to calculate

(a)

(b)

fi sin x
dx to 3D.

.10

2 -I -x
x e dx to 2D. Compare with Example 2

of Section 11-9. Which mPthod do you prefer,

and why?

10. To see that a convergent Taylor series of a function

may have little connection with the function values

consider the function

f ( x ) =

0

e
-1/x2

(a) Show that for any

-I/x2
Timm 0.
x-4-u x

n

[Hint. Put y =

(b) Using

if x = 0,

if x 0.

n > 0,

x2
and take limits as y

ff'(0) = lim
f(x) - f(0)

x4-0 x 0

show that f'(0) = 0.

886
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Cc) Compute f'(x). Using

f"(0) = lim
f'(x) - fl(0)

x-0 '

show that f"(0) = 0.

(d) Show how one can conclude that f
(n)

(0) = 0

for n = 3,4,...

(e) What is the Maclaurin series of f(x)? For

what values of x does it converge? For

what values of x does it converge to f(x)?.

II. Use the integral form of the remainder in the

Maclaurin expansion of e-x to do Example 5 of

Section 11-7.

817 937
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2. Convercencc of series.

BasicaHy, an infinNe series is just an infinite

sequence iritten in a special way. Let al, a2, a3, ... be

any sequence and define another sequence SI, S2, S3, by

S
I

= a

S
2

= a
I

+ a2,

S3 = a
I

+ a2 + a3,

and in general

n

Sn = 2] a
k.

k= I

The S's can also be defined recursively by

S
I

= a
I

S
n+I

= S
n

+ a
n+1'

n = I, 2, ...;

this is a convenient way of computing them in a flow

chart or a computer program. The sequence S
l' 2' 3' ."

is called the sequence of partial sums of the infinite series

02

a
I

+ a2 + a3 + or /2 a
n

.

n=1

CO

Example I. (a) The series 2] n has the partial sums
n=1

I, 3, 6, 10, 4100 #

n(n
2

+ I)
, ...

888
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(b) The series 2
-n has the partial sums

n=1

I 3 7 15 2n - I

" 'EC ' 2n
,

(c) The series /: (-I)
n-I has the partial sums

n=1

I, 0, I, 0, I, 0, ...

An infinite series is said to converge if the sequence

of partial sums converges. If

lim S = L
11 +co n

we write

I] an = L

n=1

and say that L is the sum of the series.

In Example I, series (b) converges to the sum I, while

series (a) and (c) diverge, i.e., do not converge.

Since series are so closely related to sequences many

of the properties of sequences developed in Chapter 2 can,

with suitable changes, be applied to series. Some of the

results of this process are stated in Problem I. We prove

here some other theorems whose proofs are not quite so direct.

889
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Theorem I. If 22 a
n
converges then lim a

n
= 0.

n+co
n=1

Proof. Let 2] a = A and let S = 2] a
k

be the n-th
n

n=1
an

k=1
partial sum. Since the

sequence S
I'

S
2'

... con- +
verges to A, given any

c > 0 there is an N such

that

IS

Then

n
- Al <

S n -9 A 5n

an

Figure 2 -I

whenever n > N.

a
n

I IS
n

- S
n-I

I = 1(S
n

- A) - (S
n-1

- A)I

< I S - A I + I S
n - 1

- A I < + =
n

whenever n > N + I. Hence lim a = 0.
n

Briefly, the proof says that since the Sn's get close

together when n is large their differences, the an's, get

small.

The converse of this theorem is not true. That is,
OD

if lim a
n

= 0 then 2] a
n

does not necessarily converge.
n=1

An example is the so-called harmonic series, 2: 1
n=1

890 94 0
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Theorem 2. The harmonic series diverges.

Proof. Compare the two series,

I I

5

I

6

I I

8

I

9

I

I + +
I

4
+ + + + + + +

7 10
+

7
,1 ,,,,,,1
7 4 8 + 7 + 7 + 7- 16

where, in the second series, there are 2j-I terms of the

form
1

. For the partial sums, T
n

, of the second series

we have

Each term of the first series is at least as large as the

corresponding term of the second series, and so for the

+ I

partial sums of the harmonic series, Stn
n

2
. Since

these increase without bound the series cannot converge.

This example illustrates that Theorem I cannot be used

to prove convergence of a series. It can be used to prove

divergence, for an equivalent statement of the theorem is:

It the sequence a1,a2,a3,... either diverges or converges
CO

to a limit not zero then 2] a diverges. Thus we can see
n=1 n

at once that Examples I (a) and (c) diverge since their

sequences of terms diverge.

891
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There is, however, a useful special case in which we

can prove convergence.

Theorem 3. Let a
l'

a
2'

a
3'

be a decreasing sequence of

positive numbers with limit 0. Then 2] (-I)
n-I

a
n

converges.
n=1

Proof. Consider the

odd partial sums < a.,,
>-

a3
S
2n+I

and the even

ones S2n. We have >-
a, s

II I I

Sz 54 56 L 55 53 Si= al

Figure 2-2

2(n+1)+I
= S

2n+I 2n+2 a2n+3 < S2n+I

since .a 2n+3 a2n+2.
Thus the odd partial sums form a

decreasing sequence. This is shown clearly in Figure 2-2.

Similarly, the even partial sums form an increasing sequence,

since

= S
2n

+ a
2n+I

> S
2(n+1)

- a 2n+2 2n

because a
2n+i

2. a 2n+2
To apply the Completeness Axiom

(Section 2-9) to these two sequences we need only to show that

lim (S 2n+I
- S

2n
) = 0.

But since S
2n+I

- S
2n = a2n +l this is one of the hypotheses

of the theorem. Hence the two sequences

892 9 4-)
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S S3, S5, and S S4, S
I' 3' 5' 2' 4' 6""

have the same limit L. It follows that the sequence
DI

S
l'

S
2'

S
3'...

has limit L; that is, I= (-I)
n-I

a
n

converges
n=1

to the sum L.

As an example of the application of this theorem we

see that the alternating harmonic series,

I I

4
I] (-1)

n-I /n = I -
2

+ -
'

n=1

does converge. (See, also, Example 3 of Section I).

Before stating a useful corollary of Theorem 3 we give
03

a definition. If the series I] an = L then the remainder
n=1 n

after n terms of the series is

R
n
= L- S

n
= I] a.

k=n+1

If we approximate the sum L by a partial sum Sn, IRn1 is the

error of the approximation. Hence we are interested in

bounds on R
n
or on IR

n
1. For series of the type of

Theorem 3 we have this convenient result.

Corollary I. For the series in Theorem 3, RN lies between

0 and the (N + I)st term.

893 9 )
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Proof. If N is even, N = 2n, we have

S < L < S
2n 2n+1'

and so

0 < L - S
2n

= R
2n

< S
2n+1

- S
2n

= a
2n+I.

N = 2n + I, then

> L > S
2n+I 2n+2 '

0 > L - S
2n+I

R
2n+I

> S
2n+2

- S
2n+I

= -a 2n+2.=

This corollary is well illustrated by Figure 2-2.

Since L lies somewhere between S
5

and S
6

it is evident

that S5 -L, which is -R5, is < S5 - S
6'

which is -a
6'

In this figure we know only that L lies between S5

and S6. If we want to make an estimate of L it is

natural to take the value half-way between these two,

that Is, S5 - o6. Then the true value of L can differ

from this by at most 4
.a5. In general we have the following:

Corollary 2. If Tn
Sn -(-1)nan+1' then

IL - T I

l
n

<
2
o
n+1

894
9
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Proof. If n is even we have

S
n

< L < S
n+I

= S
n

+ a
n+1°

Sn - la < L a <
+ a

z n+1 2 n+ 1 n 2 n+ 1 '

rn+I < L Sn 7 n+I rn+1"

That is,

IL - T I < la
n 2 n+1'

A similar procedure works if n is odd.

A series whose terms alternate in sign is called an

alternating series. It is evident that Theorem 3 and its

corollary hold for any alternating series for which the

absolute values of the terms approach zero monotonically.

That monotonicity is essential both for proof of convergence

and for the bounds of Corollary I
is shown in Problem 2.

Example 2. The Maclaurin series for ex,

ex = 1 + x + 24 +

is an alternating series if x < 0. The rmmainder R
n
(x) there-

fore lies between 0 and x
n+I /(n + I)! and we need not bothelP

895
C"
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with the complicated remainder terms in intearal or

derivative forms. For instance,

e
-I

= I - I + + -3 r + TZT + Rio

= 0.367879464 + R10

with 0 2. RIO > -II!
= -2.51 x 10

-8
. Hence if we use

Corollary 2 and take

e
1

= 0.367879451

the absolute value of the error is less than 1.3 x 10-8.

Computer programming of such a computation is relatively

simple. Figure 2-3 shows a typical flow diagram for com-

puting an when the signs of the an alternate. As in

n=1
Figure 9-3 of Chapter II, MAX is a bound on

n .te-- i
n n-H n > MAX

. <
F

do
ROUNDOFF"

I Compute,

i
SUM,

T
F. (F)

Figure 2-3

896
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the number of terms that can be added without exceeding

a roundoff error of c/2.

The box

Compute an

will often contain a recursion formula. For Example 2,

for instance, it would be

and the box

SUM -4- 0

would be replaced by

SUM 4- I

a ÷ I

to give the proper start to the recursion process.

We note here a property of series similar to the one

for sequences stated on page i59. It is that the conver-

gence or divergence of a series is not affected by re-

moval, addition, or change of value of any finite number

of terms. This can affect the sum of the series, if
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uorrgent, but the question of convergence or divergence

depends only on what happens for n > N and we can choose

N so 1-rrle -fta all the changes occur for n < N. Thus the

seri

I I I

6
5+4+3-2+1+0+0-10 + -

4
-

5
- -

behaves essentially like the alternating harmonic series

and Theorem 3 and Corollary I can be applied to it begin-

ning with the ninth term. We often cover such possibilities

by appropriate use of the phase "for sufficiently large n."

Another trivial but sometimes convenient modification

that we can make is in numbering the terms. In the above

series, for example, it might be best to start the subscript p

with the value -5, so that the general term after the

eighth can be written as (-I) n-I
/n. In such cases, when

the initial value of n is not I, we generally still call an

the n-th term, speaking, if necessary, of the "zeroth term",

the "minus second term ", etc.

898
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PROBLEMS

I. Prove the following properties of series by inter-

preting them in terms of sequences of partial sums.

(a) If a = A and E b = B, then
n

n=1 n=1 n

(a
1

± b
n

) = A ± B.
n=1

03

(b) If k X 0, then E ka
n
converges if and only if

n=1

Ea converges; if E a = A then E ka
n

= kA.

n=1 n=1 n=1

(c) If E a
n

= A and b = B, and if a < b

n=: n=1
n n n

for all n, then A < B.

2. (a) Define a a
2'

a3' ... by

1 = -10
-n

'
a 2n-1

= a
2n

n = .0 2, ...
n

00

Show that E ar is an alternating series whose
n=1

terms approach 0, but which diverges.
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(b) Define al,a2,a3,... by

a
n

= 3(-1/2)n if n is not divisible by 3.

a
n

= 10(-1/2)
n

if n is divisible by 3.

CO

Show that E a
n

is a convergent alternating
n=1

series for which the conclusions of Corollary I

are not true.

3. What conclusions, i any, can he 'rom the

following facts by mains of Theorem i?

3
(a) E n-- converge

n=1 3n

.

(b) E (I -
loc n

)

n diverges.
n=1

(c) lim
sin 0.

1
1

(d) The sequence
-071 sir=

does not have the limit 0.
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4. How many terms would be needed to get 5D accuracy

in summing each of the following alternating

series?

(a)

(b)

I - x +
3 4

- +

1 +
TTTr 3!

E xn(C)
n=0

P
x = -.5 and x = -2.

( d) x - x3
X

315

X7
Tr +

, x = .8.

5. Write a flow chart to compute the n
th

term,

n > 2, of

2 4f(X) = I - .

X
77 TT 000 1-

n 2n
(-I) x

(2e42n)(711(4n + 3))

11,

first without using a recursive formula and then

using a formula that computes an from an_i Which

way is trc, most efficient? Remember this as you work

the next two problems.
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6. (a) Modify Figure 2-3 to compute ex, for x < 0,

from its Maclaurin series.

(bi Write a program from your flow diagram and

test it by computing e
-I and e

-2 to 5D.

(c) Make the necessary modifications in your program

and print a table of e-x to 5D for x = 0(.1)5.

7. Carry out parts (a) and (b) of Problem 6 for sin x

and cos x. For part (c) make a 5D table of sin x

and cos x for x = 0(1)45 degrees.

8. Use the method of Problem 8, Section I, but modified

by the use of Corollary 2, to approximate the followIlp

integrals.

(a) cos x2 dx to 2D.
JO

(b) fo e-x dx to 3n.
.5

Obi
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9 Problem 4(a) shows that it is impractical to try

to sum the alternating harmonic series directly.

For such slowly converging series there are methods

of "accelerating" the rate of convergence. If one

plots several partial sums, as in Figure 2-2, he

soon notices that the midpoints of successive

segments (Sn,Sn4.1) are much closer to the limit than

the ends of the segments. Let Tn = (Sn + Sn +l)/2 be

these midpoints.

(a) Use the Squeeze Theorem of-Section 2-7 to prove

that lim T = lim S .

n4.0 n n4-0, n

(b) If we define

n -I

n
-b = (-I) (Tb

I

= T
n n -I)"

CO

n = 2,3,...,
then T

n
is the n-th partial sum of :E:(-I)

n-I
b
n

n=1

Show that

bl = (gal - a2)/2, b
n

= (a
n

- a
n+I

)12,

and so E(-I) n-f
b
n

is also an alternating series
n=1

with the same sum as E(-1) n-I
an.

n=1
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1

(c) For a
n

= show that b
1

=
3

,
b
n 2n(n

1

+ I)' n > I.
4

For al =
3

W '
an I77-i

n> I, show that
n + IT '

17 2
b1 = "2 b n > I.

1 4' 0 n 4n(n + 1)(n + 2) '

17 2
For a1 = .27 , an

'

n >
4n(n + I)(n + 2)

find

(d) Sum the alternating harmonic series correct to 5D.
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3. Tests for Convergence.

For series that do not satisfy the conditions of

Theorem 3 of the last section the question of convergence

or divergence is more difficult to answer. Of great

importance in this connection is the following extension

of the Completeness Axiom.

Theorem 1. A bounded monotone sequence is convergent.

Note that a monotone sequence is automatically

bounded on one side by its first term, e.g. any Increas-

ing sequence is boundc.i below. A proof of the theorem

is given at the end of this section.

Corollary 1. An infinite series of positive terms con-

verges if and only if the partial sums are bounded.

The proof is left to the reader.

The way this Corollary is most often used is illustrated

in the following example.

905 9
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Example I. We know that the series

1 1 4.
I + + +

2 4 7 ''
2-

converges to the sum 2. How about the series

(2) I + 1

+

1 1 1

+ ?1x2 2x4 3x8 '
n2

n

Each term of (2) is less than or equal to the correspond-

ing term of (I), and so the partial sums of (2) are less

than or equal to the partial sums of (1). By Corollary I

the partial sums of (I) are bounded, since (I) converges,

and so the partial sums of (2) are bounded. Hence, again

by Corollary I, (2) converges.

Knowi:;g that (2) ccoverges we can speak of its

remainders. By the same argument, the remainders of (2)

are less than or equal to the remainders of (1), that is,

R
n
< 2n. This gives us some idea of how many terms to

take to get the sum to a given accuracy.

Example 2. Compare the harmonic series,

1
I(3) I +

.2"

1

+ + 4.

and

2 3 4
(4) 0 + .3- + + T + +

n2 - 1

906 r:f 5.

+
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Beginning with the second term, each term of (4) is greater

than the corresponding term of (3), and hence, except for

an additive constant, the partial sums of (4) are greater

than the partial sums of (3). Since (3) diverges, a double

application of Corollary I, as in the preceding example,

shows that (4) also diverges.

The general method used in these examples can be stated

as follows:

Comparison Test I. Let a
n

> 0, b
n

> b
n

> a
n

, for all

sufficiently large n.

(a) If 2:b
n

converges then 2:a
n

converges, and if

S
n

and R
n

are their respective remainders after n terms

then 0 < R < S .

n n

(b) If 2:a
n
diverges then 2:b

n
diverges.

For brevity we have written merely 2:instead of

. We shall do this whenever there is no danger of the

n=1
meaning being mistaken.

To apply this test we need some standard series for

comparison purposes. So far we have only one useful

divergent series, the harmonic series, and one simple con-

vergent series, the geometric series
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I + r + r2 + + rn + ,

rn+1
for which R

n
=

I - r '
(see Example 2 in Section I) and

which therefore converges when Irl < I. We anticipate

a result of the next section with the statement:

CO

2] nP converges if and only if p > I.

n=1

This series is called a p-series.

VTT-7
Example 3, Test n2 - 10

for convergence. For large n

the constants 2 and IC) are insignificant compared with n

and n2, and so the term is approximately
1.17 This
n2

suggests comparison with the p-series for n = 3/2, and

also suggests that we look for convergence. However our

term is obviously greater than n
-3/2 and it does not

seem that we can apply Part (a) of the test. The way

out of this dilemma is to multiply the p- series by a

suitable constant; This does not affect its convergence.

So we ask: Is

/77-7--F
< c

n2 - 10
n2

for a .itable c? Rewriting thy: inequality as

or

r17-7---F2 n2 - 10

n2

10
v/T-47 77.1 < c(I - )

908
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it is evident that this is true for c = 2 and, say, n > 100.

Hence our series converges.

The above tricks of comparing the approximate sizes of

cc responding terms for. large n, and of multiplying the

comparison series by a constant, are very useful. They are

combined in the following statement:

Comparison Test 2. If, for all sufficiently large n,
an < (converges

an > 0, bn > 0, and 7- then if Eto
n n (diverges

so does Ea

Note that if both conditions are satisfied, i.e.
a

0 < M,
2 b

< -2 < r then Ea
n

and 22b
n
either both converge

n

or both diverge.

a

Proof. If
n
converges so does EM

I

b
n

. Hence if T2 < MI,
n

i.e. an < Mibn,
n
converges by Test I. The other half

of the theorem is proved similarly.

The followinp special case of Test 2 is often useful.

It will apply, for example, to Lx,,Inple 2.

909
9,59
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Comparison Test 3. If, for all suffficiently large n,
a

a > 0 and b
n

> 0, and if lim c< ,, then if
n

c < ( converges"
and 12b / so does Ea

c > 0
n

(
1

d i verges
n

The proof of this from Test 2 is left to the reader.

03

Example 4. Test /2 n5(.9)n for convergence. We kno
00 n=1

that E(.9)n converges but our terms are greater than
/La
n=1

those of this comparison series so the tests tell us

nothing. But we also know from the limit computations

of Section 10-4 that exponential terms dominate powers.

So we take the convergent series E(.99)n as a comparison.

Then

n n5
iim

n5(.9) lim

n- (.99)
n (1.1)

0

by Problem 5(b) of Section 10-4. Hence our series converges.

The comparison tests, derived from Corollary I, apply

only to series whose terms are ultimately positive. For

other series we can get soma information by considering the

series whose terms are the absolute values of those of the

given series. If this series converges we say the given

910
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